说实话感觉不是一道蓝题……感觉挺水的,不过为了水题解,水题就够了(其实是觉得思考的过程比较典型,记录一下)

题解

刚开始看这道题感觉上没什么思路,但是我们可以先考虑用 \(O(n)\) 的时间去枚举发生的出逃次数,再用 \(O(n^2)\) 的时间去计算每一个出逃次数的情况下不一致条目的最小值。

现在我们考虑对于任意一个出逃次数 \(d\) ,我们如何计算。不妨设 \(f_{i,j}\) 表示到第 \(i\) 个点出逃过 \(j\) 次的最小差异值,易得 \(dp\) 方程为:

\[f_{i,j}=min(f_{k,j-1}+cost_{k+1,i})
\]

其中 \(cost_{l,r}\) 是指:区间 \(l\) ~ \(r\) 为一次完整的出逃区间(即其中没有发生过一次出逃且 \(l\) 和 \(r+1\) 发生了出逃)时的差异值。可以发现这个东西是可以 \(O(n^2)\) 预处理的。

那么现在需要枚举 \(i\) ,\(j\) ,\(k\) ,\(d\),复杂度为 \(O(n^4)\) ,肯定是不行的,但是我们可以发现在处理略大的 \(d\) 值时其实是可以计算出较小的 \(d\) 值的,所以我们可以直接一起计算,就不需要枚举 \(d\) 了,复杂度就降为 \(O(n^3)\) ,可行了。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=105;
int n,a[N];
int cost[N][N],f[N][N];
int main()
{
cin>>n;
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
for(int i=1;i<=n;++i)
{
for(int j=i;j<=n;++j)
cost[i][j]=cost[i][j-1]+(a[j]!=j-i);
}
// for(int i=1;i<=n;++i)
// {
// for(int j=i;j<=n;++j)
// printf("%d %d %d\n",i,j,cost[i][j]);
// }
memset(f,63,sizeof(f));
for(int i=1;i<=n;++i)
{
f[i][1]=cost[1][i];
for(int j=1;j<i;++j)
{
for(int k=1;k<=j;++k)
f[i][k+1]=min(f[i][k+1],f[j][k]+cost[j+1][i]);
}
}
for(int i=1;i<=n;++i)
printf("%d\n",f[n][i]);
return 0;
}

P4267 [USACO18FEB]Taming the Herd的更多相关文章

  1. 解题:USACO18FEB Taming the Herd

    题面 从零开始的DP学习系列之贰(我的DP真的就这么烂TAT) 设DP状态的另一个技巧,考虑题目中有关答案的各种信息 然后这种和结尾有关系的$dp$可以考虑向前找结尾来转移 设$dp[i][j]$表示 ...

  2. [USACO18FEB]Taming the Herd

    Luogu4267 题解 对于\(dp[i][j]\) , 预处理出一些转移一步的次数 , 然后可以很方便的转移 : \(dp[i][j]=min(dp[k][j-1]+cnt[j][i])\)

  3. BZOJ5196: [Usaco2018 Feb]Taming the Herd(DP暴力)

    5196: [Usaco2018 Feb]Taming the Herd Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 78  Solved: 71[ ...

  4. 2019 GDUT Rating Contest II : A. Taming the Herd

    题面: A. Taming the Herd Input file: standard input Output file: standard output Time limit: 1 second Me ...

  5. DP小题集

    P2736 "破锣摇滚"乐队 Raucous Rockers 你刚刚继承了流行的"破锣摇滚"乐队录制的尚未发表的N(1 <= N <= 20)首歌的 ...

  6. USACO比赛题泛刷

    随时可能弃坑. 因为不知道最近要刷啥所以就决定刷下usaco. 优先级排在学习新算法和打比赛之后. 仅有一句话题解.难一点的可能有代码. 优先级是Gold>Silver.Platinum刷不动. ...

  7. hdu 2715 Herd Sums

    Herd Sums Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  8. POJ 2140 Herd Sums

    http://poj.org/problem?id=2140 Description The cows in farmer John's herd are numbered and branded w ...

  9. zookeeper分布式锁避免羊群效应(Herd Effect)

    本文(转自:http://jm-blog.aliapp.com/?p=2554)主要讲述在使用ZooKeeper进行分布式锁的实现过程中,如何有效的避免“羊群效应( herd effect)”的出现. ...

随机推荐

  1. RBD快速删除的方法分析与改进

    前言 这个问题在很久以前就有一篇文章进行过讨论 remove-big-rbd,这个文章写的比较清楚了,并且对不同的方法做了分析,这里先把结论说下 rbd类型 rbd rm 方法 rados -p rm ...

  2. matlab 数组操作作业

    写出下列语句的计算结果及作用 1.A= [2 5 7 3 1 3 4 2];    创建二维数组并赋值 2.[rows, cols] = size(A);    ​把A的尺寸赋值给数组,rows为行, ...

  3. 图像分割必备知识点 | Dice损失 理论+代码

    本文包含代码案例和讲解,建议收藏,也顺便点个赞吧.欢迎各路朋友爱好者加我的微信讨论问题:cyx645016617. 在很多关于医学图像分割的竞赛.论文和项目中,发现 Dice 系数(Dice coef ...

  4. 分享用MathType编辑字母与数学公式的技巧

    利用几何画板在Word文档中画好几何图形后,接着需要编辑字母与数学公式,这时仅依靠Word自带的公式编辑器,会发现有很多公式不能编辑,所以应该采用专业的公式编辑器MathType,下面就一起来学习用M ...

  5. 「CF645E」 Intellectual Inquiry

    题目链接 CF645E 题意 有一个长为\(n\)的由小写字母组成的字符串,需要用小写字母再填\(m\)位,使最后的字符串中本质不同的子串数量尽量多,答案对\(10^9+7\)取模. 本题数据:\(n ...

  6. jQuery 第八章 实例方法 遍历索引

    遍历索引相关方法: .each() .index() ------------------------------------------------- .each() 有点像数组的 forEach( ...

  7. 【移动自动化】【一】环境依赖:android sdk 环境配置(windows + linux)

    Android自动化前提依赖 android sdk 模拟器: mumu模拟器, 逍遥模拟器 真机 windows 环境下Android SDK 配置 配置java环境 去官网下载jdk http:/ ...

  8. selenium+python自动化元素定位

    最近学习自动化测试,终于初步学习完成,需要进行博客日志总结,加深巩固自己的知识. 元素的八种定位方式 1.id 以百度为例子 我们在python输入的元素定位语法:bs.find_element_by ...

  9. [LGOJ1273]有线电视网

    solution 用了一个很有意思的转移方法. $dp[i][j] $ 表达 \(i\) 作为根,\(j\)个终端时最大的收益,即钱数,当\(0\leq dp[1][i]\)时,即以1为根可以转移到\ ...

  10. 安全的字符串拷贝strcpy_s的实现与理解

    在C标准库中提供了字符串拷贝函数strcpy,而微软则为为它提供了一个更安全的版本strcpy_s,其函数原型为 errno_t __cdecl strcpy_s( char* _Destinatio ...