题面

CF101D Castle

给一棵 \(n\) 个节点的带权树,求一种遍历方案,从 \(1\) 出发,每条边走两次,走过所有点,第一次经过每个节点的平均时间最小。输出这个平均时间。

数据范围:\(2\le n\le 10^5\)。


题解

可以对于每棵子树单独计算。

虽然子树内走的顺序是不固定的,但是要消耗的总时间是固定的。

设 \(f_u\) 表示 \(u\) 这棵子树内的第一次经过每个节点的 时间和,\(w_{u,v}\) 是 \(u,v\) 两点间的边权,\(sz_u\) 是 \(u\) 的子树大小,\(szt_u\) 是走遍 \(u\) 这棵子树的所需时间。

由于每棵子树遍历一次而且有顺序,记 \(v_i\) 为 \(u\) 第 \(i\) 个遍历的子树。

\[f_u=\sum_{i} [f_{v_i}+sz_{v_i}w_{u,v_i}+(szt_{v_i}+2w_{u,v})\sum_{j>i} sz_{v_j}]
\]

\(\sum_{i} (f_{v_i}+sz_{v_i}w_{u,v_i})\) 是顺序不同时固定的,\(\sum_{i} (szt_{v_i}+2w_{u,v})\sum_{j>i} sz_{v_j}\) 是会变的,所以这题的难点在于找到它的最小值。

蒟蒻想了好久,这个式子很眼熟,但是怎么化都貌似不能贪心,于是请教了旁边的保队长。

很明显,如果对于 \(i\ge 3\),\(v_i\) 都已经确定,那么 \(p\) 和 \(q\) 分别作为 \(v_1,v_2\) 的贡献是

\[v_1=p,v_2=q:(szt_p+2w_{u,p})(sz_{q}+\sum_{j\ge 3} sz_{v_j})+(szt_p+2w_{u,p})\sum_{j\ge 3}sz_{v_j}+\cdots
\]
\[v_1=q,v_2=p:(szt_q+2w_{u,q})(sz_{p}+\sum_{j\ge 3} sz_{v_j})+(szt_q+2w_{u,q})\sum_{j\ge 3}sz_{v_j}+\cdots
\]

其实差别就在于 \((szt_p+2w_{u,p})sz_{q}\) 和 \((szt_q+2w_{u,q})sz_{p}\),而且手玩一下可以发现,对于任意两个 \(v\) 顺序都是类似的。

所以把所有 \(v\in son_u\) 丢进一个 vector,然后对于 \(p\),\(q\),按上面的差别排序即可。


代码

#include <bits/stdc++.h>
using namespace std; //Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair((a),(b))
#define x first
#define y second
#define bg begin()
#define ed end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
#define R(i,a,b) for(int i=(a),i##E=(b);i<i##E;i++)
#define L(i,a,b) for(int i=(b)-1,i##E=(a)-1;i>i##E;i--)
const int iinf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f; //Data
const int N=1e5;
int n; //Tree
vector<int> e[N],to,we;
void adde(int u,int v,int w){
e[u].pb(sz(to)),to.pb(v),we.pb(w);
e[v].pb(sz(to)),to.pb(u),we.pb(w);
}
int sz[N],szt[N];
ll dfs(int u,int fa){
ll res=0; sz[u]=1,szt[u]=0;
vector<int> cho;
for(int v:e[u])if(to[v]^fa){
res+=dfs(to[v],u);
res+=1ll*we[v]*sz[to[v]];
szt[to[v]]+=we[v]*2;
sz[u]+=sz[to[v]],szt[u]+=szt[to[v]];
cho.pb(to[v]);
}
sort(cho.bg,cho.ed,[&](int p,int q){
return 1ll*szt[p]*sz[q]<1ll*szt[q]*sz[p];
});
int tot=sz[u]-1;
for(int v:cho) tot-=sz[v],res+=1ll*szt[v]*tot;
return res;
} //Main
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
cout.precision(12);
cin>>n;
R(i,1,n){int u,v,w; cin>>u>>v>>w,--u,--v,adde(u,v,w);}
// cout<<dfs(0,-1)<<'\n';
cout<<fixed<<1.*dfs(0,-1)/(n-1)<<'\n';
return 0;
}

祝大家学习愉快!

题解-CF101D Castle的更多相关文章

  1. CF101D Castle 树形DP、贪心

    题目传送门 题意:给出一个有$N$个点的树,你最开始在$1$号点,经过第$i$条边需要花费$w_i$的时间.每条边只能被经过$2$次.求出到达除$1$号点外所有点的最早时间的最小平均值.$N \leq ...

  2. CF101D Castle

    传送门 首先,一定要把所有点遍历一遍,这时答案应该是\(\frac{\sum 某个点第一次被遍历的时间点}{n-1}\quad\),而且每条边只能走两次,所以每次要遍历完某棵子树才能遍历其它子树. 考 ...

  3. 洛谷 P2945 [USACO09MAR]沙堡Sand Castle 题解

    题目传送门 大概思路就是把这两个数组排序.在扫描一次,判断大小,累加ans. #include<bits/stdc++.h> using namespace std; int x,y,z; ...

  4. 题解 洛谷P1457 【城堡 The Castle】

    这道题,看似很烦,无从下手,但其实只要用位运算和联通快就能水过了呀. 首先,输入:似乎大意是把一个数拆成二进数的相加,分别表示\((i,j)\)东南西北是否有墙.\(1\)表示西,\(2\)表示北,\ ...

  5. 题解 P1457 【城堡 The Castle】

    来讨论区大摇大摆地逛了一圈后,我发现竟然大家的代码 都很长 然而代码真的要写那么长吗 首先,来分析问题,1,2,4,8,这些数显然是有特点的,也许你已经想到了没错,它们都是2的次方数. 1是2的0次方 ...

  6. 洛谷P1457 城堡 The Castle

    P1457 城堡 The Castle 137通过 279提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 我们憨厚的USACO ...

  7. BZOJ3399: [Usaco2009 Mar]Sand Castle城堡

    3399: [Usaco2009 Mar]Sand Castle城堡 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 22  Solved: 17[Sub ...

  8. 3399: [Usaco2009 Mar]Sand Castle城堡

    3399: [Usaco2009 Mar]Sand Castle城堡 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 37  Solved: 32[Sub ...

  9. P1457 城堡 The Castle

    轻度中毒 原题 :The Castle 以下为题解部分:明明辣么简单的一道题,硬是搞了1.5h,WTF?以下列出本题的一些要点. 搜索(DFS)嘛,染色嘛,统计大小嘛,很容易想,也很更易处理. 接下来 ...

随机推荐

  1. ISO/OSI参考模型

    ISO/OSI参考模型: 1.应用层:提供应用程序间通信.应用层与应用程序界面沟通,以达到展示给用户的目的.常见的协议:HTTP.HTTPS.FTP.TELNET.SSH.SMTP等 2.表示层:处理 ...

  2. Spring源码之@Lazy和预实例化

    https://www.cnblogs.com/yanze/p/10243348.html 懒加载优缺点 优点:懒加载,对象使用的时候才去创建:启动速度快,节省资源 缺点:不利于提前发现错误:初次请求 ...

  3. 快速增加osdmap的epoch

    最近因为一个实验需要用到一个功能,需要快速的增加 ceph 的 osdmap 的 epoch 编号 查询osd的epoch编号 root@lab8107:~# ceph osd stat osdmap ...

  4. http://www.etymon.cn/yingyucigen/3093.html

    import requests import lxml.etree as etree import xml.etree.ElementTree as ET # 详情页 # 3093-148 # htt ...

  5. MOOC JAVA笔记

    MOOC JAVA笔记 1.基础了解 JDK是开发人员安装的,它提供了开发java程序的必须工具 JRE是普通用户安装的,它提供了java的运行环境 JVM是java虚拟机运行程序的核心 2.程序的移 ...

  6. linux centos 6.x 装机后基本优化

    1.关闭SELinux /etc/selinux/config配置文件内替换 se -i 's/SELINUX=enforcing/SELINUX=disabled/g'需要重启grep SELINU ...

  7. Java中的Socket用法

    转发链接:https://www.cnblogs.com/zhanglei93/p/6217384.html (1)Java中的Socket用法 Java中的Socket分为普通的Socket和Nio ...

  8. 让面试官心服口服:Thread.sleep、synchronized、LockSupport.park的线程阻塞有何区别?

    前言 在日常编码的过程中,我们经常会使用Thread.sleep.LockSupport.park()主动阻塞线程,或者使用synchronized和Object.wait来阻塞线程保证并发安全.此时 ...

  9. NVM、NPM、Node.js的安装选择

    在安装和使用这三种工具时,我们有很多方式可以选择,这些方法各有优劣,每个人都有自己用起来比较习惯的配置,所以我在这里记录下自己比较习惯的一种安装方式与其他一些可能的选项. NVM.NPM.Node.j ...

  10. 精尽MyBatis源码分析 - MyBatis 的 SQL 执行过程(一)之 Executor

    该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...