• a. 提升Spark运行

spark.sql.adaptive.enabled=true

spark的自适应执行,启动Adaptive Execution

spark.dynamicAllocation.enabled=true

开启动态资源分配,Spark可以根据当前作业的负载动态申请和释放资源

spark.dynamicAllocation.maxExecutors=${numbers}

开启动态资源分配后,同一时刻,最多可申请的executor个数。task较多时,可适当调大此参数,保证task能够并发执行完成,缩短作业执行时间

spark.dynamicAllocation.minExecutors=3

某一时刻executor的最小个数。平台默认设置为3,即在任何时刻,作业都会保持至少有3个及以上的executor存活,保证任务可以迅速调度

spark.sql.shuffle.partitions

JOIN或聚合等需要shuffle的操作时,设定从mapper端写出的partition个数。类似于MR中的reducer,当partition多时,产生的文件也会多

spark.sql.adaptive.shuffle.targetPostShuffleInputSize=67108864

当mapper端两个partition的数据合并后数据量小于targetPostShuffleInputSize时,Spark会将两个partition进行合并到一个reducer端进行处理。默认64m

spark.sql.adaptive.minNumPostShufflePartitions=50

当spark.sql.adaptive.enabled参数开启后,有时会导致很多分区被合并,为了防止分区过少而影响性能。设置该参数,保障至少的shuffle分区数

spark.hadoop.mapreduce.input.fileinputformat.split.maxsize=134217728

控制在ORC切分时stripe的合并处理。当几个stripe的大小大于设定值时,会合并到一个task中处理。适当调小该值以增大读ORC表的并发 【最小大小的控制参数

spark.hadoop.mapreduce.input.fileinputformat.split.minsize

  • b. 提升Executor执行能力

spark.executor.memory=4g

用于缓存数据、代码执行的堆内存以及JVM运行时需要的内存。设置过小容易导致OOM,而实际执行中需要的大小可以通过文件来估算

spark.yarn.executor.memoryOverhead=1024

Spark运行还需要一些堆外内存,直接向系统申请,如数据传输时的netty等

spark.executor.cores=4

单个executor上可以同时运行的task数,该参数决定了一个executor上可以并行执行几个task。几个task共享同一个executor的内存(spark.executor.memory+spark.yarn.executor.memoryOverhead)。适当提高该参数的值,可以有效增加程序的并发度,是作业执行的更快。不过同时也增加executor内存压力,容易出现OOM

  • c. 其他参数

    参数名称 当前 说明/含义
    spark.sql.autoBroadcastJoinThreshold 64mb 使用BroadcastJoin时候表的大小阈值(-1 则取消使用)
    spark.sql.broadcastTimeout 300s BroadcastJoin的等待超时的时间
    spark.default.parallelism 24 指定每个stage默认的并行task数量,处理RDD时才会起作用,对Spark SQL的无效
    spark.speculation true 执行任务的推测执行。这意味着如果一个或多个任务在一个阶段中运行缓慢,它们将被重新启动
    spark.speculation.quantile 在特定阶段启用推测之前必须完成的部分任务。推荐0.75/0.95
    spark.kryoserializer.buffer.max 64m Kryo串行缓冲区的最大允许大小(以MiB为单位)。它必须大于您尝试序列化的任何对象,并且必须小于2048m。如果在Kryo中收到“超出缓冲区限制”异常,请增加此值。推荐1024m
    spark.sql.hive.metastorePartitionPruning true
    spark.sql.hive.caseSensitiveInferenceMode INFER_AND_SAVE 不太了解,推荐使用NEVER_INFER
    spark.sql.optimizer.metadataOnly true 启用仅使用表的元数据的元数据查询优化来生成分区列,而不是表扫描
  • d. 常见问题

  • OOM内存溢出

Spark根据 spark.executor.memory+spark.yarn.executor.memoryOverhead的值向RM申请一个容器,当executor运行时使用的内存超过这个限制时,会被yarn kill掉。失败信息为:Container killed by YARN for exceeding memory limits. XXX of YYY physical memory used. Consider boosting spark.yarn.executor.memoryOverhead。合理的调整这两个参数

  • 小文件数过多

当spark执行结束后,如果生成较多的小文件可以通过hive对文件进行合并。

rc/orc文件: ALTER TABLE table_name CONCATENATE ;

其他文件:指定输出文件大小并重写表(insert overwrite table _name_new select * from table_name)

  • spark结果与hive结果不一致
  • 数据文件字段中存在特殊字符带来的错行错列,剔除特殊字符,如: regexp_replace(name,'\n|\r|\t|\r\n|\u0001', '')
  • spark为了优化读取parquet格式文件,使用自己的解析方式读取数据。将该方式置为falseset spark.sql.hive.convertMetastoreParquet=false
  • hive中对于null和空值与spark的差异。已知的办法是调整hive的参数:serialization.null.format 如:alter table table_name set serdeproperties('serialization.null.format' = '');

作者:别停下思考

链接:https://www.jianshu.com/p/4449dce2acc7

来源:简书

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Spark参数优化的更多相关文章

  1. 【转载】Spark性能优化指南——高级篇

    前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数 ...

  2. 【转载】 Spark性能优化指南——基础篇

    转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能 ...

  3. 【转】【技术博客】Spark性能优化指南——高级篇

    http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...

  4. 【转】Spark性能优化指南——基础篇

    http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a ...

  5. spark核心优化详解

    大家好!转眼又到了经验分享的时间了.吼吼,我这里没有摘要也没有引言,只有单纯的经验分享,请见谅哦! 言归正传,目前在大数据领域能够提供的核心计算的工具,如离线计算hadoop生态圈的mr计算模型,以及 ...

  6. Spark性能优化指南——高级篇(转载)

    前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问 ...

  7. Spark性能优化指南——基础篇(转载)

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  8. Spark性能优化指南-高级篇

    转自https://tech.meituan.com/spark-tuning-pro.html,感谢原作者的贡献 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作 ...

  9. Spark性能优化指南——基础篇

    本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一 ...

随机推荐

  1. 建议收藏!2020阿里面试题(JVM+Spring Cloud+微服务)上

    前言 对于大厂面试,我想要强调的一点就是心态真的很重要,是决定你在面试过程中发挥的关键,若不能正常发挥,很可能就因为一个小失误与offer失之交臂,所以一定要重视起来.另外提醒一点,充分复习,是消除你 ...

  2. Folx种子下载器怎么管理下载任务

    对于喜欢追剧的用户来说,同时下载好几部剧是司空见惯的事情.但有时候,有些剧比较好看或者热度比较高时,就会希望优先将其下载下来. 对于使用Folx种子下载器的用户来说,可以结合使用下载列表+最大活动数的 ...

  3. Guitar Pro7应该怎么添加音色

    众所周知,音色是乐器的灵魂所在.音色的好坏,直接影响到了整首曲子的质量.Guitar Pro7中,用户不仅可以切换乐器模拟器,还能分别对其进行音色调整.对于新手而言,Guitar Pro7是一款非常合 ...

  4. css3系列之text的常用属性 和 Multi-column(多列)

    text(文本) white-space: word-break word-wrap/overflow-wrap text-align: word-spacing letter-spacing tex ...

  5. Dynamics 365-表单元素取值/赋值

    取值/赋值 参考: 山人丶 提示: 查找类型赋值时需指定目标实体,记录名称及id值 时间和日期类型赋值时需赋值Date类型 //获取new_name的值(单行文本) Xrm.Page.getAttri ...

  6. Windows启用SSH命令

    前言 直接通过windows自带的CMD终端远程连接服务器,需要先安装好OpenSSH客户端. 安装 使用浏览器打开官网: https://www.mls-software.com/opensshd. ...

  7. css实现元素环形旋转

    元素中心旋转效果记录 先上代码 //css代码 .header{   -webkit-animation:rotateImg 1s linear infinite;   /*rotateImg对应下方 ...

  8. 用微信表情翻译表白,程序员的小浪漫,赶紧Get起来!

  9. How tomcat works(深入剖析tomcat)阅读笔记1-4章

    How tomcat works chapter 1 简单的web服务器 这一张的主要内容就是实现一个简单的静态资源服务器,socket编程,利用java提供的socket和serverSocket编 ...

  10. [从源码学设计]蚂蚁金服SOFARegistry之消息总线

    [从源码学设计]蚂蚁金服SOFARegistry之消息总线 目录 [从源码学设计]蚂蚁金服SOFARegistry之消息总线 0x00 摘要 0x01 相关概念 1.1 事件驱动模型 1.1.1 概念 ...