前言

Java 8 的 Stream 使得代码更加简洁易懂,本篇文章深入分析 Java Stream 的工作原理,并探讨 Steam 的性能问题。


Java 8 集合中的 Stream 相当于高级版的 Iterator,它可以通过 Lambda 表达式对集合进行各种非常便利、高效的聚合操作(Aggregate Operation),或者大批量数据操作 (Bulk Data Operation)。

Stream的聚合操作与数据库SQL的聚合操作sorted、filter、map等类似。我们在应用层就可以高效地实现类似数据库SQL的聚合操作了,而在数据操作方面,Stream不仅可以通过串行的方式实现数据操作,还可以通过并行的方式处理大批量数据,提高数据的处理效率。

操作分类

官方将 Stream 中的操作分为两大类:

  • 中间操作(Intermediate operations),只对操作进行了记录,即只会返回一个流,不会进行计算操作。
  • 终结操作(Terminal operations),实现了计算操作。

中间操作又可以分为:

  • 无状态(Stateless)操作,元素的处理不受之前元素的影响。
  • 有状态(Stateful)操作,指该操作只有拿到所有元素之后才能继续下去。

终结操作又可以分为:

  • 短路(Short-circuiting)操作,指遇到某些符合条件的元素就可以得到最终结果
  • 非短路(Unshort-circuiting)操作,指必须处理完所有元素才能得到最终结果。

操作分类详情如下图所示:

源码结构

Stream 相关类和接口的继承关系如下图所示:

BaseStream

最顶端的接口类,定义了流的基本接口方法,最主要的方法为 spliterator、isParallel。

Stream

最顶端的接口类。定义了流的常用方法,例如 map、filter、sorted、limit、skip、collect 等。

ReferencePipeline

ReferencePipeline 是一个结构类,定义内部类组装了各种操作流,定义了HeadStatelessOpStatefulOp三个内部类,实现了 BaseStream 与 Stream 的接口方法。

Sink

Sink 接口定义了 Stream 之间的操作行为,包含 begin()end()cancellationRequested()accpt()四个方法。ReferencePipeline最终会将整个 Stream 流操作组装成一个调用链,而这条调用链上的各个 Stream 操作的上下关系就是通过 Sink 接口协议来定义实现的。

操作叠加

Stream 的基础用法就不再叙述了,这里从一段代码开始,分析 Stream 的工作原理。

@Test
public void testStream() {
List<String> names = Arrays.asList("kotlin", "java", "go");
int maxLength = names.stream().filter(name -> name.length() <= 4).map(String::length)
.max(Comparator.naturalOrder()).orElse(-1);
System.out.println(maxLength);
}

当使用 Stream 时,主要有 3 部分组成,下面一一讲解。

加载数据源

调用 names.stream() 方法,会初次加载 ReferencePipeline 的 Head 对象,此时为加载数据源操作。

java.util.Collection#stream

default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}

StreamSupport 类中的 stream 方法,初始化了一个 ReferencePipeline的 Head 内部类对象。

java.util.stream.StreamSupport#stream(java.util.Spliterator, boolean)

public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
Objects.requireNonNull(spliterator);
return new ReferencePipeline.Head<>(spliterator,
StreamOpFlag.fromCharacteristics(spliterator),
parallel);
}

中间操作

接着为 filter(name -> name.length() <= 4).mapToInt(String::length),是中间操作,分为无状态中间操作 StatelessOp 对象和有状态操作 StatefulOp 对象,此时的 Stage 并没有执行,而是通过AbstractPipeline 生成了一个中间操作 Stage 链表。

java.util.stream.ReferencePipeline#filter

@Override
public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
Objects.requireNonNull(predicate);
return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SIZED) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
} @Override
public void accept(P_OUT u) {
if (predicate.test(u))
downstream.accept(u);
}
};
}
};
}

java.util.stream.ReferencePipeline#map

@Override
@SuppressWarnings("unchecked")
public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
return new Sink.ChainedReference<P_OUT, R>(sink) {
@Override
public void accept(P_OUT u) {
downstream.accept(mapper.apply(u));
}
};
}
};
}

可以看到 filter 和 map 方法都返回了一个新的 StatelessOp 对象。new StatelessOp 将会调用父类 AbstractPipeline 的构造函数,这个构造函数将前后的 Stage 联系起来,生成一个 Stage 链表:

AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
if (previousStage.linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
previousStage.linkedOrConsumed = true;
previousStage.nextStage = this; this.previousStage = previousStage;
this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
this.sourceStage = previousStage.sourceStage;
if (opIsStateful())
sourceStage.sourceAnyStateful = true;
this.depth = previousStage.depth + 1;
}

终结操作

最后为 max(Comparator.naturalOrder()),是终结操作,会生成一个最终的 Stage,通过这个 Stage 触发之前的中间操作,从最后一个Stage开始,递归产生一个Sink链。

java.util.stream.ReferencePipeline#max

@Override
public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
return reduce(BinaryOperator.maxBy(comparator));
}

最终调用到 java.util.stream.AbstractPipeline#wrapSink,这个方法会调用 opWrapSink 生成一个 Sink 链表,对应到本文的例子,就是 filter 和 map 操作。

@Override
@SuppressWarnings("unchecked")
final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
Objects.requireNonNull(sink); for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
}
return (Sink<P_IN>) sink;
}

在上面 opWrapSink 上断点调试,发现最终会调用到本例中的 filter 和 map 操作。

wrapAndCopyInto 生成 Sink 链表后,会通过 copyInfo 方法执行 Sink 链表的具体操作。

@Override
final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
Objects.requireNonNull(wrappedSink); if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
wrappedSink.begin(spliterator.getExactSizeIfKnown());
spliterator.forEachRemaining(wrappedSink);
wrappedSink.end();
}
else {
copyIntoWithCancel(wrappedSink, spliterator);
}
}

上面的核心代码是:

spliterator.forEachRemaining(wrappedSink);

java.util.Spliterators.ArraySpliterator#forEachRemaining

@Override
public void forEachRemaining(Consumer<? super T> action) {
Object[] a; int i, hi; // hoist accesses and checks from loop
if (action == null)
throw new NullPointerException();
if ((a = array).length >= (hi = fence) &&
(i = index) >= 0 && i < (index = hi)) {
do { action.accept((T)a[i]); } while (++i < hi);
}
}

断点调试,可以发现首先进入了 filter 的 Sink,其中 accept 方法的入参是 list 中的第一个元素“kotlin”(代码中的 3 个元素是:"kotlin", "java", "go")。filter 的传入是一个 Lambda 表达式:

filter(name -> name.length() <= 4)

显然这个第一个元素“kotlin”的 predicate 是不会进入的。

对于第二个元素“java”,predicate.test 会返回 true(字符串“java”的长度<=4),则会进入 map 的 accept 方法。

本次调用 accept 方法时,empty 为 false,会将 map 后的结果(int 类型的 4)赋值给 t。

public static <T> TerminalOp<T, Optional<T>>
makeRef(BinaryOperator<T> operator) {
Objects.requireNonNull(operator);
class ReducingSink
implements AccumulatingSink<T, Optional<T>, ReducingSink> {
private boolean empty;
private T state; public void begin(long size) {
empty = true;
state = null;
} @Override
public void accept(T t) {
if (empty) {
empty = false;
state = t;
} else {
state = operator.apply(state, t);
}
} ……
}
}

对于第三个元素“go”,也会进入 accept 方法,此时 empty 为 true, map 后的结果(int 类型的 2)会与上次的结果 4 通过自定义的比较器相比较,存入符合结果的值。

public static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator) {
Objects.requireNonNull(comparator);
return (a, b) -> comparator.compare(a, b) >= 0 ? a : b;
}

本文代码中的 max 传入的比较器为:

max(Comparator.naturalOrder())

至此会返回 int 类型的 4。

并行处理

上面的例子是串行处理的,如果要改成并行也很简单,只需要在 stream() 方法后加上 parallel() 就可以了,并行代码可以写成:

@Test
public void testStream() {
List<String> names = Arrays.asList("kotlin", "java", "go");
int maxLength = names.stream().parallel().filter(name -> name.length() <= 4)
.map(String::length).max(Comparator.naturalOrder()).orElse(-1);
System.out.println(maxLength);
}

Stream 的并行处理在执行终结操作之前,跟串行处理的实现是一样的。而在调用终结方法之后,实现的方式就有点不太一样,会调用 TerminalOp 的 evaluateParallel 方法进行并行处理。

final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
assert getOutputShape() == terminalOp.inputShape();
if (linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
linkedOrConsumed = true; return isParallel()
? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
: terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
}

核心是使用了 ForkJoin 框架,对 Stream 处理进行分片,最终会调用下面的代码,这里就不展开分析了。

java.util.stream.AbstractTask#compute

@Override
public void compute() {
Spliterator<P_IN> rs = spliterator, ls; // right, left spliterators
long sizeEstimate = rs.estimateSize();
long sizeThreshold = getTargetSize(sizeEstimate);
boolean forkRight = false;
@SuppressWarnings("unchecked") K task = (K) this;
while (sizeEstimate > sizeThreshold && (ls = rs.trySplit()) != null) {
K leftChild, rightChild, taskToFork;
task.leftChild = leftChild = task.makeChild(ls);
task.rightChild = rightChild = task.makeChild(rs);
task.setPendingCount(1);
if (forkRight) {
forkRight = false;
rs = ls;
task = leftChild;
taskToFork = rightChild;
}
else {
forkRight = true;
task = rightChild;
taskToFork = leftChild;
}
taskToFork.fork();
sizeEstimate = rs.estimateSize();
}
task.setLocalResult(task.doLeaf());
task.tryComplete();
}

并行错误的使用方法

@Test
public void testParallelWrong() {
List<Integer> parallelList = new ArrayList<>();
IntStream.range(0, 1000).boxed().parallel().filter(i -> i % 2 == 1)
.forEach(parallelList::add);
System.out.println(parallelList.size());
}

上面的输出结果会经常小于500,这是因为 parallelList 的类型是 ArrayList,并不是线程安全的,在执行 add 操作时,可能正好赶上扩容或者线程被占用,会覆盖其他线程的赋好的值。

并行正确的使用方法

@Test
public void testParallelRight() {
List<Integer> parallelList = IntStream.range(0, 1000).boxed().parallel()
.filter(i -> i % 2 == 1).collect(Collectors.toList());
System.out.println(parallelList.size());
}

性能

下面的文章参考自:JavaLambdaInternals/8-Stream Performance.md,侵删。

为保证测试结果真实可信,我们将JVM运行在-server模式下,测试数据在GB量级,测试机器采用常见的商用服务器,配置如下:

OS CentOS 6.7 x86_64
CPU Intel Xeon X5675, 12M Cache 3.06 GHz, 6 Cores 12 Threads
内存 96GB
JDK java version 1.8.0_91, Java HotSpot(TM) 64-Bit Server VM

测试所用代码在这里,测试结果汇总.

测试方法和测试数据

性能测试并不是容易的事,Java性能测试更费劲,因为虚拟机对性能的影响很大,JVM对性能的影响有两方面:

  1. GC的影响。GC的行为是Java中很不好控制的一块,为增加确定性,我们手动指定使用CMS收集器,并使用10GB固定大小的堆内存。具体到JVM参数就是-XX:+UseConcMarkSweepGC -Xms10G -Xmx10G
  2. JIT(Just-In-Time)即时编译技术。即时编译技术会将热点代码在JVM运行的过程中编译成本地代码,测试时我们会先对程序预热,触发对测试函数的即时编译。相关的JVM参数是-XX:CompileThreshold=10000

Stream并行执行时用到ForkJoinPool.commonPool()得到的线程池,为控制并行度我们使用Linux的taskset命令指定JVM可用的核数。

测试数据由程序随机生成。为防止一次测试带来的抖动,测试4次求出平均时间作为运行时间。

实验一 基本类型迭代

测试内容:找出整型数组中的最小值。对比for循环外部迭代和Stream API内部迭代性能。

测试程序IntTest,测试结果如下图:

图中展示的是for循环外部迭代耗时为基准的时间比值。分析如下:

  1. 对于基本类型Stream串行迭代的性能开销明显高于外部迭代开销(两倍);
  2. Stream并行迭代的性能比串行迭代和外部迭代都好。

并行迭代性能跟可利用的核数有关,上图中的并行迭代使用了全部12个核,为考察使用核数对性能的影响,我们专门测试了不同核数下的Stream并行迭代效果:

分析,对于基本类型:

  1. 使用Stream并行API在单核情况下性能很差,比Stream串行API的性能还差;
  2. 随着使用核数的增加,Stream并行效果逐渐变好,比使用for循环外部迭代的性能还好。

以上两个测试说明,对于基本类型的简单迭代,Stream串行迭代性能更差,但多核情况下Stream迭代时性能较好。

实验二 对象迭代

再来看对象的迭代效果。

测试内容:找出字符串列表中最小的元素(自然顺序),对比for循环外部迭代和Stream API内部迭代性能。

测试程序StringTest,测试结果如下图:

结果分析如下:

  1. 对于对象类型Stream串行迭代的性能开销仍然高于外部迭代开销(1.5倍),但差距没有基本类型那么大。
  2. Stream并行迭代的性能比串行迭代和外部迭代都好。

再来单独考察Stream并行迭代效果:

分析,对于对象类型:

  1. 使用Stream并行API在单核情况下性能比for循环外部迭代差;
  2. 随着使用核数的增加,Stream并行效果逐渐变好,多核带来的效果明显。

以上两个测试说明,对于对象类型的简单迭代,Stream串行迭代性能更差,但多核情况下Stream迭代时性能较好。

实验三 复杂对象归约

从实验一、二的结果来看,Stream串行执行的效果都比外部迭代差(很多),是不是说明Stream真的不行了?先别下结论,我们再来考察一下更复杂的操作。

测试内容:给定订单列表,统计每个用户的总交易额。对比使用外部迭代手动实现和Stream API之间的性能。

我们将订单简化为<userName, price, timeStamp>构成的元组,并用Order对象来表示。测试程序ReductionTest,测试结果如下图:

分析,对于复杂的归约操作:

  1. Stream API的性能普遍好于外部手动迭代,并行Stream效果更佳;

再来考察并行度对并行效果的影响,测试结果如下:

分析,对于复杂的归约操作:

  1. 使用Stream并行归约在单核情况下性能比串行归约以及手动归约都要差,简单说就是最差的;
  2. 随着使用核数的增加,Stream并行效果逐渐变好,多核带来的效果明显。

以上两个实验说明,对于复杂的归约操作,Stream串行归约效果好于手动归约,在多核情况下,并行归约效果更佳。我们有理由相信,对于其他复杂的操作,Stream API也能表现出相似的性能表现。

结论

上述三个实验的结果可以总结如下:

  1. 对于简单操作,比如最简单的遍历,Stream串行API性能明显差于显示迭代,但并行的Stream API能够发挥多核特性。
  2. 对于复杂操作,Stream串行API性能可以和手动实现的效果匹敌,在并行执行时Stream API效果远超手动实现。

所以,如果出于性能考虑,1. 对于简单操作推荐使用外部迭代手动实现,2. 对于复杂操作,推荐使用Stream API, 3. 在多核情况下,推荐使用并行Stream API来发挥多核优势,4.单核情况下不建议使用并行Stream API。

参考文章

  1. JavaLambdaInternals/6-Stream Pipelines.md
  2. JavaLambdaInternals/8-Stream Performance.md
  3. 极客时间-Java性能调优实战/06.Stream如何提高遍历集合效率?

公众号

coding 笔记、点滴记录,以后的文章也会同步到公众号(Coding Insight)中,希望大家关注_

代码和思维导图在 GitHub 项目中,欢迎大家 star!

Java Stream 源码分析的更多相关文章

  1. Java Reference 源码分析

    @(Java)[Reference] Java Reference 源码分析 Reference对象封装了其它对象的引用,可以和普通的对象一样操作,在一定的限制条件下,支持和垃圾收集器的交互.即可以使 ...

  2. Java 集合源码分析(一)HashMap

    目录 Java 集合源码分析(一)HashMap 1. 概要 2. JDK 7 的 HashMap 3. JDK 1.8 的 HashMap 4. Hashtable 5. JDK 1.7 的 Con ...

  3. java集合源码分析(三):ArrayList

    概述 在前文:java集合源码分析(二):List与AbstractList 和 java集合源码分析(一):Collection 与 AbstractCollection 中,我们大致了解了从 Co ...

  4. java集合源码分析(六):HashMap

    概述 HashMap 是 Map 接口下一个线程不安全的,基于哈希表的实现类.由于他解决哈希冲突的方式是分离链表法,也就是拉链法,因此他的数据结构是数组+链表,在 JDK8 以后,当哈希冲突严重时,H ...

  5. Java集合源码分析(六)TreeSet<E>

    TreeSet简介 TreeSet 是一个有序的集合,它的作用是提供有序的Set集合.它继承于AbstractSet抽象类,实现了NavigableSet<E>, Cloneable, j ...

  6. Java集合源码分析(五)HashSet<E>

    HashSet简介 HashSet实现Set接口,由哈希表(实际上是一个HashMap实例)支持.它不保证set 的迭代顺序:特别是它不保证该顺序恒久不变.此类允许使用null元素. HashSet源 ...

  7. Java集合源码分析(四)Vector<E>

    Vector<E>简介 Vector也是基于数组实现的,是一个动态数组,其容量能自动增长. Vector是JDK1.0引入了,它的很多实现方法都加入了同步语句,因此是线程安全的(其实也只是 ...

  8. Java集合源码分析(三)LinkedList

    LinkedList简介 LinkedList是基于双向循环链表(从源码中可以很容易看出)实现的,除了可以当做链表来操作外,它还可以当做栈.队列和双端队列来使用. LinkedList同样是非线程安全 ...

  9. Java集合源码分析(二)ArrayList

    ArrayList简介 ArrayList是基于数组实现的,是一个动态数组,其容量能自动增长,类似于C语言中的动态申请内存,动态增长内存. ArrayList不是线程安全的,只能用在单线程环境下,多线 ...

随机推荐

  1. python pip源国内加速

    Pip源国内加速list 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.com/pypi/simple/ ...

  2. CF1413C Perform Easily 题解

    毒瘤C题,考场卡我1个小时 首先,这道题难点在哪里?它的最大值与最小值都是浮动的. 怎么办?把最小/最大值固定! 以把最小值固定为例,我们枚举每个音符,并枚举它使用哪条琴弦,将它此时的位置强制其作为最 ...

  3. 面试 之 nginx,负载,动静分离

    大家先看这个逻辑图 为什么我们要这样去架构我们的一个项目呢? 这样做的话,动态请求要先访问 A,A 转发访问 B,再由 B 返回结果给 A,A 最后又将结果返回给客户端这样是不是很麻烦? 最初开发的时 ...

  4. youtube-dl 源码看看,例子是下载网页

    1, 跑起来 下载 youtube-dl, 配合 launch.json, # 本文中 himala 是代指,具体见文末的 github repo "configurations" ...

  5. 数据采集与融合第四次作业:多线程以及scrapy框架的使用

    数据采集第四次作业:多线程以及scrapy框架的使用 任务一:单多线程的使用 单线程代码: from bs4 import BeautifulSoup from bs4 import UnicodeD ...

  6. Scrum转型(一) 为什么敏捷和Scrum

    1.1 为什么敏捷 由于传统的瀑布模型管理方法无法满足现代某些软件产品开发过程的特点,我们需要使用敏捷的方法(例如,Scrum是一个让我们关注于在短时间里交付高质量商业价值的敏捷框架). 需求频繁变动 ...

  7. python脚本打包成rpm软件包

    前言 软件最终都会有交付的形式,有的是用tar包,有个是以目录,有的是封成一个文件包,从大多数使用场景来说,直接打包成软件包的方式是最简单,也是最不容易出错的,路径可以在包里面写死了 实践 关于打包的 ...

  8. ceph luminous bluestore热插拔实现

    需求描述 在某些测试场景下面,需要满足能够拔盘以后在插入的时候能够自动上线磁盘,这个需求实际在生产中是不建议使用的,原因是插入的磁盘如果本身存在问题,那么拉起的操作可能会破坏了本身集群的稳定性,所以这 ...

  9. 为什么删除的Ceph对象还能get

    前言 在很久以前在研究一套文件系统的时候,当时发现一个比较奇怪的现象,没有文件存在,磁盘容量还在增加,在研究了一段时间后,发现这里面有一种比较奇特的处理逻辑 这套文件系统在处理一个文件的时候放入的是一 ...

  10. 《.NET 5.0 背锅案》第7集-大结局:捉拿真凶 StackExchange.Redis.Extensions 归案

    第1集:验证 .NET 5.0 正式版 docker 镜像问题 第2集:码中的小窟窿,背后的大坑,发现重要嫌犯 EnyimMemcachedCore 第3集-剧情反转:EnyimMemcachedCo ...