Spark底层原理详细解析(深度好文,建议收藏)
Spark简介
Apache Spark是用于大规模数据处理的统一分析引擎,基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量硬件之上,形成集群。
Spark源码从1.x的40w行发展到现在的超过100w行,有1400多位大牛贡献了代码。整个Spark框架源码是一个巨大的工程。下面我们一起来看下spark的底层执行原理。
Spark运行流程
具体运行流程如下:
SparkContext 向资源管理器注册并向资源管理器申请运行Executor
资源管理器分配Executor,然后资源管理器启动Executor
Executor 发送心跳至资源管理器
SparkContext 构建DAG有向无环图
将DAG分解成Stage(TaskSet)
把Stage发送给TaskScheduler
Executor 向 SparkContext 申请 Task
TaskScheduler 将 Task 发送给 Executor 运行
同时 SparkContext 将应用程序代码发放给 Executor
Task 在 Executor 上运行,运行完毕释放所有资源
1. 从代码角度看DAG图的构建
Val lines1 = sc.textFile(inputPath1).map(...).map(...)
Val lines2 = sc.textFile(inputPath2).map(...)
Val lines3 = sc.textFile(inputPath3)
Val dtinone1 = lines2.union(lines3)
Val dtinone = lines1.join(dtinone1)
dtinone.saveAsTextFile(...)
dtinone.filter(...).foreach(...)
上述代码的DAG图如下所示:
Spark内核会在需要计算发生的时刻绘制一张关于计算路径的有向无环图,也就是如上图所示的DAG。
Spark 的计算发生在RDD的Action操作,而对Action之前的所有Transformation,Spark只是记录下RDD生成的轨迹,而不会触发真正的计算。
2. 将DAG划分为Stage核心算法
一个Application可以有多个job多个Stage:
Spark Application中可以因为不同的Action触发众多的job,一个Application中可以有很多的job,每个job是由一个或者多个Stage构成的,后面的Stage依赖于前面的Stage,也就是说只有前面依赖的Stage计算完毕后,后面的Stage才会运行。
划分依据:
Stage划分的依据就是宽依赖,像reduceByKey,groupByKey等算子,会导致宽依赖的产生。
回顾下宽窄依赖的划分原则:
窄依赖:父RDD的一个分区只会被子RDD的一个分区依赖。即一对一或者多对一的关系,可理解为独生子女。 常见的窄依赖有:map、filter、union、mapPartitions、mapValues、join(父RDD是hash-partitioned)等。
宽依赖:父RDD的一个分区会被子RDD的多个分区依赖(涉及到shuffle)。即一对多的关系,可理解为超生。 常见的宽依赖有groupByKey、partitionBy、reduceByKey、join(父RDD不是hash-partitioned)等。
核心算法:回溯算法
从后往前回溯/反向解析,遇到窄依赖加入本Stage,遇见宽依赖进行Stage切分。
Spark内核会从触发Action操作的那个RDD开始从后往前推,首先会为最后一个RDD创建一个Stage,然后继续倒推,如果发现对某个RDD是宽依赖,那么就会将宽依赖的那个RDD创建一个新的Stage,那个RDD就是新的Stage的最后一个RDD。
然后依次类推,继续倒推,根据窄依赖或者宽依赖进行Stage的划分,直到所有的RDD全部遍历完成为止。
3. 将DAG划分为Stage剖析
一个Spark程序可以有多个DAG(有几个Action,就有几个DAG,上图最后只有一个Action(图中未表现),那么就是一个DAG)。
一个DAG可以有多个Stage(根据宽依赖/shuffle进行划分)。
同一个Stage可以有多个Task并行执行(task数=分区数,如上图,Stage1 中有三个分区P1、P2、P3,对应的也有三个 Task)。
可以看到这个DAG中只reduceByKey操作是一个宽依赖,Spark内核会以此为边界将其前后划分成不同的Stage。
同时我们可以注意到,在图中Stage1中,从textFile到flatMap到map都是窄依赖,这几步操作可以形成一个流水线操作,通过flatMap操作生成的partition可以不用等待整个RDD计算结束,而是继续进行map操作,这样大大提高了计算的效率。
4. 提交Stages
调度阶段的提交,最终会被转换成一个任务集的提交,DAGScheduler通过TaskScheduler接口提交任务集,这个任务集最终会触发TaskScheduler构建一个TaskSetManager的实例来管理这个任务集的生命周期,对于DAGScheduler来说,提交调度阶段的工作到此就完成了。
而TaskScheduler的具体实现则会在得到计算资源的时候,进一步通过TaskSetManager调度具体的任务到对应的Executor节点上进行运算。
5. 监控Job、Task、Executor
- DAGScheduler监控Job与Task:
要保证相互依赖的作业调度阶段能够得到顺利的调度执行,DAGScheduler需要监控当前作业调度阶段乃至任务的完成情况。
这通过对外暴露一系列的回调函数来实现的,对于TaskScheduler来说,这些回调函数主要包括任务的开始结束失败、任务集的失败,DAGScheduler根据这些任务的生命周期信息进一步维护作业和调度阶段的状态信息。
- DAGScheduler监控Executor的生命状态:
TaskScheduler通过回调函数通知DAGScheduler具体的Executor的生命状态,如果某一个Executor崩溃了,则对应的调度阶段任务集的ShuffleMapTask的输出结果也将标志为不可用,这将导致对应任务集状态的变更,进而重新执行相关计算任务,以获取丢失的相关数据。
6. 获取任务执行结果
- 结果DAGScheduler:
一个具体的任务在Executor中执行完毕后,其结果需要以某种形式返回给DAGScheduler,根据任务类型的不同,任务结果的返回方式也不同。
- 两种结果,中间结果与最终结果:
对于FinalStage所对应的任务,返回给DAGScheduler的是运算结果本身。
而对于中间调度阶段对应的任务ShuffleMapTask,返回给DAGScheduler的是一个MapStatus里的相关存储信息,而非结果本身,这些存储位置信息将作为下一个调度阶段的任务获取输入数据的依据。
- 两种类型,DirectTaskResult与IndirectTaskResult:
根据任务结果大小的不同,ResultTask返回的结果又分为两类:
如果结果足够小,则直接放在DirectTaskResult对象内中。
如果超过特定尺寸则在Executor端会将DirectTaskResult先序列化,再把序列化的结果作为一个数据块存放在BlockManager中,然后将BlockManager返回的BlockID放在IndirectTaskResult对象中返回给TaskScheduler,TaskScheduler进而调用TaskResultGetter将IndirectTaskResult中的BlockID取出并通过BlockManager最终取得对应的DirectTaskResult。
7. 任务调度总体诠释
一张图说明任务总体调度:
Spark运行架构特点
1. Executor进程专属
每个Application获取专属的Executor进程,该进程在Application期间一直驻留,并以多线程方式运行Tasks。
Spark Application不能跨应用程序共享数据,除非将数据写入到外部存储系统。如图所示:
2. 支持多种资源管理器
Spark与资源管理器无关,只要能够获取Executor进程,并能保持相互通信就可以了。
Spark支持资源管理器包含: Standalone、On Mesos、On YARN、Or On EC2。如图所示:
3. Job提交就近原则
提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack(机架)里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换;
如果想在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext。
如图所示:
4. 移动程序而非移动数据的原则执行
移动程序而非移动数据的原则执行,Task采用了数据本地性和推测执行的优化机制。
关键方法:taskIdToLocations、getPreferedLocations。
如图所示:
搜索公众号:五分钟学大数据,深度钻研大数据技术!
Spark底层原理详细解析(深度好文,建议收藏)的更多相关文章
- Flink 中极其重要的 Time 与 Window 详细解析(深度好文,建议收藏)
前言 Flink 是流式的.实时的 计算引擎 上面一句话就有两个概念,一个是流式,一个是实时. 流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以 ...
- C++多态的实现及原理详细解析
C++多态的实现及原理详细解析 作者: 字体:[增加 减小] 类型:转载 C++的多态性用一句话概括就是:在基类的函数前加上virtual关键字,在派生类中重写该函数,运行时将会根据对象的实际类型 ...
- jdk动态代理和cglib动态代理底层实现原理详细解析(cglib动态代理篇)
代理模式是一种很常见的模式,本文主要分析cglib动态代理的过程 1. 举例 使用cglib代理需要引入两个包,maven的话包引入如下 <!-- https://mvnrepository.c ...
- Spark底层原理简化版
目录 Spark SQL/DF的执行过程 集群运行部分 Aggregation Join Shuffle Tungsten 内存管理机制 缓存敏感计算(Cacheaware computation) ...
- spring boot 启动原理详细解析
我们开发任何一个Spring Boot项目,都会用到如下的启动类 1 @SpringBootApplication 2 public class Application { 3 public stat ...
- delphi程序设计之底层原理(有些深度)
虽然用delphi也有7,8年了,但大部分时间还是用在系统的架构上,对delphi底层还是一知半解,今天在网上看到一篇文章写得很好,虽然是07年的,但仍有借鉴的价值. 现摘录如下: Delphi程序设 ...
- NormalMap原理详细解析
NormalMap的实现标志着对渲染流水线的各个环节以及矩阵变化有了正确和深入的认识.这里记录一下学习过程,以及关于NormalMap的诸多细节. 刚开始想要实现NormalMap程序的时候,查阅的是 ...
- 【分类问题中模型的性能度量(二)】超强整理,超详细解析,一文彻底搞懂ROC、AUC
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 ...
- [源码解析] 深度学习分布式训练框架 horovod (8) --- on spark
[源码解析] 深度学习分布式训练框架 horovod (8) --- on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (8) --- on spark 0x00 摘要 0 ...
随机推荐
- 实用干货!Java开发企业级权限管理系统视频教程
全程手把手带你运用Java技术栈,打造一套基于最流行的RBAC拓展模型的,分布式的,有界面的,高灵活性,高拓展性的企业级权限管理系统.学完本课程你将可以轻松应对绝大多数企业开发中与权限管理及后台系统相 ...
- SpringBoot进阶教程(六十八)Sentinel实现限流降级
前面两篇文章nginx限流配置和SpringBoot进阶教程(六十七)RateLimiter限流,我们介绍了如何使用nginx和RateLimiter限流,这篇文章介绍另外一种限流方式---Senti ...
- 编程方式实现MySQL批量导入sql文件
有时候需要在本地导入一些stage环境的数据到本地mysql,面对1000+的sql文件(包含表结构和数据,放在同一个文件夹下),使用navicat一个一个导入sql文件显然有点太慢了,于是考虑使用s ...
- 熬夜肝了这篇Spring Cloud Gateway的功能及综合使用
前言 SpringCloud 是微服务中的翘楚,最佳的落地方案. Spring Cloud Gateway 是 Spring Cloud 新推出的网关框架,之前是 Netflix Zuul.网关通常在 ...
- cmake - 编译
cmake在编译期间会使用到的命令总结: 1.指定编译器并同时设置编译选项 set(CMAKE_CXX_COMPILER "clang++" ) # 显示指定使用的C++编译器 s ...
- PHP curl爬取数据 加入cookie值
public function get_cookie(){ header("Content-type:text/html;Charset=utf8"); $ch =curl_ini ...
- JAVA_基础反射创建运行时类的对象
通过反射去创建对应的运行时类的对象 newInstance():调用此方法,创建对应的运行时类的对象.内部调用的是空参的构造器. 要想此方法正常的创建运行时类的对象,要求: 1.运行时类必须提供空参构 ...
- CODING x 腾讯兔小巢,打破研发团队与用户反馈的最后一道壁垒
任何产品的更新迭代都离不开用户的使用反馈.产品经理日常需要奔走到一线部门了解用户的使用反馈:一线运营或业务团队日常需要向产品经理转述用户的问题场景及催促需求的进度.中间需要消耗大量的精力来进行信息转达 ...
- SQL注入-流程
一般注入分类: 时间,布尔,报错,堆,联合 有关函数介绍: current_user() 当前用户名 session_user() 链接数据库的用户名 @@basedir mysql安装路径 @@da ...
- kubernets之服务的实现方式
一 服务如何通过kubernetes集群的组件来实现其功能 1.1 节点上的所有的服务相关的功能实现都是通过节点上面的kube-proxy来实现的,服务提供了一个或者多个服务IP以及端口对客户端开 ...