题目链接:https://codeforces.com/contest/1427/problem/D

题意

给出一个大小为 \(n\) 的排列,每次操作可以将 \(n\) 个数分为 \(1 \sim n\) 个非空连续份,然后将对称的份两两交换,试给出在 \(n\) 次操作内将排列排为升序的操作过程。

题解

  1. 找到值相差为 \(1\) 的逆序对:\(i<j\),\(a_i = a_j + 1\)
  2. 将已为升序的数视为一个整体,找到 \(t\) 满足 \(i \le t < j\),\(a_t > a_{t+1}\)
  3. 分为 \(4\) 份,\(D_1=[a_1,a_2,\dots,a_{i-1}],\ D_2=[a_i,a_{i+1},\dots, a_t],\ D_3=[a_{t+1},a_{t+2},\dots, a_j],\ D_4=[a_{j+1},a_{j+2},\dots, a_n]\)
  4. 将对称组交换,转至步骤 \(1\) 。

代码

#include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
vector<int> a(n), pos(n);
for (int i = 0; i < n; i++) {
cin >> a[i];
--a[i];
}
vector<vector<int>> ans;
while (not is_sorted(a.begin(), a.end())) {
for (int i = 0; i < n; i++) {
pos[a[i]] = i;
}
//1
for (int i = 1; i < n; i++) {
if (pos[i] < pos[i - 1]) {
//2
int l = pos[i];
int r = pos[i - 1];
int mid = l;
while (a[mid + 1] == a[mid] + 1) ++mid;
//3
ans.push_back({l, mid - l + 1, r - mid, n - r - 1});
//4
vector<int> b;
for (int i = r + 1; i < n; i++) b.push_back(a[i]);
for (int i = mid + 1; i < r + 1; i++) b.push_back(a[i]);
for (int i = l; i < mid + 1; i++) b.push_back(a[i]);
for (int i = 0; i < l; i++) b.push_back(a[i]);
a.swap(b);
break;
}
}
}
cout << ans.size() << "\n";
for (auto &v : ans) {
//每份非空
while (v.back() == 0) v.pop_back();
while (v.front() == 0) v.erase(v.begin());
cout << v.size() << "\n";
for (int i = 0; i < int(v.size()); i++) {
cout << v[i] << " \n"[i == int(v.size()) - 1];
}
}
return 0;
}

Codeforces Global Round 11 D. Unshuffling a Deck(构造/相邻逆序对)的更多相关文章

  1. Codeforces Global Round 11 个人题解(B题)

    Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...

  2. Codeforces Global Round 11 A~D题解

    A.Avoiding Zero 题目链接:https://codeforces.ml/contest/1427 题目大意:给定一个数组a1,a2...,an,要求找出一个a重排后的数组b1,b2,.. ...

  3. Codeforces Global Round 11【ABCD】

    比赛链接:https://codeforces.com/contest/1427 A. Avoiding Zero 题意 将 \(n\) 个数重新排列使得不存在为 \(0\) 的前缀和. 题解 计算正 ...

  4. Codeforces Global Round 11 C. The Hard Work of Paparazzi(dp/最长上升子序列)

    题目链接:https://codeforces.com/contest/1427/problem/C 题意 \(r\) 行与 \(r\) 列相交形成了 \(r \times r\) 个点,初始时刻记者 ...

  5. Codeforces Global Round 11 B. Chess Cheater(贪心)

    题目链接:https://codeforces.com/contest/1427/problem/B 题意 给出一个长为 \(n\) 由 W, L 组成的字符串,如果一个 W 左侧为 W,则它提供 2 ...

  6. Codeforces Global Round 11 A. Avoiding Zero(前缀和)

    题目链接:https://codeforces.com/contest/1427/problem/A 题意 将 \(n\) 个数重新排列使得不存在为 \(0\) 的前缀和. 题解 计算正.负前缀和,如 ...

  7. Codeforces Global Round 11 C. The Hard Work of Paparazzi (DP)

    题意:有\(r\)X\(r\)的网格图,有\(n\)位名人,会在\(t_i\)时出现在\((x_i,y_i)\),如果过了\(t_i\)名人就会消失,从某一点走到另外一点需要花费的时间是它们之间的曼哈 ...

  8. Codeforces Global Round 11 B. Chess Cheater (贪心,结构体排序)

    题意:你和朋友进行了\(n\)个回合的棋艺切磋,没有平局,每次要么输要么赢,每次赢可以得一分,假如前一局也赢了,那么可以得两分,结果已成定局,但是你确可以作弊,最多修改\(k\)个回合的结果,问你作弊 ...

  9. Codeforces Global Round 8 C. Even Picture(构造)

    题目链接:https://codeforces.com/contest/1368/problem/C 题意 构造一个只含有灰.白块的网格,要求: 所有灰块为一个连通块 每个灰块与偶数个灰块相邻 恰有 ...

随机推荐

  1. Tomcat 配置Vue history模式

    Tomcat 配置Vue  history模式 近日 , 在使用 Tomcat 部署Vue项目时 , 刷新项目出现404的异常 . 原因是 Vue使用了history模式 , 而tomcat没有相关配 ...

  2. 为什么.NET Standard 仍然有意义?

    .NET Standard 是.NET 官方的API规范,可在许多.NET环境中使用.之所以存在,面向.NET Standard 2.0的库提供了最大可能的覆盖范围,并启用了几乎所有现代的.NET功能 ...

  3. CPNDet:粗暴地给CenterNet加入two-stage精调,更快更强 | ECCV 2020

    本文为CenterNet作者发表的,论文提出anchor-free/two-stage目标检测算法CPN,使用关键点提取候选框再使用两阶段分类器进行预测.论文整体思路很简单,但CPN的准确率和推理速度 ...

  4. 内存性能测试 Memtester+mbw

    Memtester简单介绍 Memtester主要是捕获内存错误和一直处于很高或者很低的坏位, 其测试的主要项目有随机值,异或比较,减法,乘法,除法,与或运算等等. 通过给定测试内存的大小和次数, 可 ...

  5. 用percona monitoring plugins 监控mysql

    下载:http://www.percona.com/redir/downloads/percona-monitoring-plugins/1.1.1/percona-zabbix-templates- ...

  6. h5-video,视频在微信里变形、有黑边

    如这种情况: 微信可谓是video标签的重灾区,如果你兼容了安卓的微信,那么在其他浏览器一般也没问题了除了个别(IE:你们看我干吗?). 解决方案: <video src="video ...

  7. su3和SU01中参数说明

    对于SU3和SU01中的的"参数"tab栏中的参数可以自己添加和删除. 所有的参数都存在表TPARA中,并且有对应的参数的说明. 那么这些参数如何使用呢? 通常的使用是,通过类似  ...

  8. https://tools.ietf.org/html/rfc8017

    PKCS #1: RSA Cryptography Specifications Version 2.2

  9. 从URL输入到页面展现到底发生什么?

    目录 前言 一.URL 到底是啥 二.域名解析(DNS) 1.IP 地址 2.什么是域名解析 3. 浏览器如何通过域名去查询 URL 对应的 IP 呢 4. 小结 三.TCP 三次握手 1.TCP 三 ...

  10. Java Socket InetAddress类 Socket DatagramPacket TCP、UDP示例

    java.net :为实现网络应用程序提供类. InetAddress类 方法摘要 方法摘要 boolean equals(Object obj) : 将此对象与指定对象比较. byte[] getA ...