矩阵图

https://datawhalechina.github.io/pms50/#/chapter9/chapter9

导入所需要的库

import numpy as np              # 导入numpy库
import pandas as pd # 导入pandas库
import matplotlib as mpl # 导入matplotlib库
import matplotlib.pyplot as plt
import seaborn as sns # 导入seaborn库
%matplotlib inline # 在jupyter notebook显示图像

设定图像各种属性

large = 22; med = 16; small = 12

params = {'axes.titlesize': large,    # 设置子图上的标题字体
'legend.fontsize': med, # 设置图例的字体
'figure.figsize': (16, 10), # 设置图像的画布
'axes.labelsize': med, # 设置标签的字体
'xtick.labelsize': med, # 设置x轴上的标尺的字体
'ytick.labelsize': med, # 设置整个画布的标题字体
'figure.titlesize': large}
#plt.rcParams.update(params) # 更新默认属性
plt.style.use('seaborn-whitegrid') # 设定整体风格
sns.set_style("white") # 设定整体背景风格

程序代码

# step1:导入数据

df = sns.load_dataset('iris')

# step2: 绘制矩阵图

    # 画布
plt.figure(figsize = (12, 10), # 画布尺寸_(12, 10)
dpi = 80) # 分辨率_80
# 矩阵图
sns.pairplot(df, # 使用的数据
kind = 'scatter', # 绘制图像的类型_scatter
hue = 'species', # 类别的列,让不同类别具有不谈的颜色
plot_kws = dict(s = 50, # 点的尺寸
edgecolor = 'white', # 边缘颜色
linewidth = 2.5)) # 线宽

# step1:导入数据

df = sns.load_dataset('iris')

# step2: 绘制矩阵图

    # 画布
plt.figure(figsize = (12, 10), # 画布尺寸_(12, 10)
dpi = 80) # 分辨率_80
# 矩阵图(带有拟合线的散点图)
sns.pairplot(df, # 使用的数据
kind = 'reg', # 绘制图像的类型_reg
hue = 'species') # 类别的列,让不同类别具有不谈的颜色

博文总结

seaborn.pairplot

seaborn.pairplot(data, hue=None, hue_order=None,
palette=None, vars=None, x_vars=None, y_vars=None, kind='scatter',
diag_kind='auto', markers=None, height=2.5, aspect=1,
dropna=True, plot_kws=None, diag_kws=None, grid_kws=None, size=None)

Plot pairwise relationships in a dataset.

By default, this function will create a grid of Axes such that each variable in data will by shared in the y-axis across a single row and in the x-axis across a single column.

The diagonal Axes are treated differently, drawing a plot to show the univariate distribution of the data for the variable in that column.

It is also possible to show a subset of variables or plot different variables on the rows and columns.

This is a high-level interface for PairGrid that is intended to make it easy to draw a few common styles. You should use PairGriddirectly if you need more flexibility.

参数:data:DataFrame

Tidy (long-form) dataframe where each column is a variable and each row is an observation.

hue:string (variable name), optional

Variable in data to map plot aspects to different colors.

hue_order:list of strings

Order for the levels of the hue variable in the palette

palette:dict or seaborn color palette

Set of colors for mapping the hue variable. If a dict, keys should be values in the hue variable.

vars:list of variable names, optional

Variables within data to use, otherwise use every column with a numeric datatype.

{x, y}_vars:lists of variable names, optional

Variables within data to use separately for the rows and columns of the figure; i.e. to make a non-square plot.

kind:{‘scatter’, ‘reg’}, optional

Kind of plot for the non-identity relationships.

diag_kind:{‘auto’, ‘hist’, ‘kde’}, optional

Kind of plot for the diagonal subplots. The default depends on whether "hue" is used or not.

markers:single matplotlib marker code or list, optional

Either the marker to use for all datapoints or a list of markers with a length the same as the number of levels in the hue variable so that differently colored points will also have different scatterplot markers.

height:scalar, optional

Height (in inches) of each facet.

aspect:scalar, optional

Aspect * height gives the width (in inches) of each facet.

dropna:boolean, optional

Drop missing values from the data before plotting.

{plot, diag, grid}_kws:dicts, optional

Dictionaries of keyword arguments.

返回值:grid:PairGrid

Returns the underlying PairGrid instance for further tweaking.

seaborn.load_dataset

seaborn.load_dataset(name, cache=True, data_home=None, **kws)

从在线库中获取数据集(需要联网)。

参数:name:字符串

数据集的名字 (<cite>name</cite>.csv on https://github.com/mwaskom/seaborn-data)。 您可以通过 get_dataset_names() 获取可用的数据集。

cache:boolean, 可选

如果为True,则在本地缓存数据并在后续调用中使用缓存。

data_home:string, 可选

用于存储缓存数据的目录。 默认情况下使用 ~/seaborn-data/

kws:dict, 可选

传递给 pandas.read_csv

数据可视化实例(十一): 矩阵图(matplotlib,pandas)的更多相关文章

  1. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  2. 数据可视化实例(十四):面积图 (matplotlib,pandas)

    偏差 (Deviation) 面积图 (Area Chart) 通过对轴和线之间的区域进行着色,面积图不仅强调峰和谷,而且还强调高点和低点的持续时间. 高点持续时间越长,线下面积越大. https:/ ...

  3. 数据可视化实例(三): 散点图(pandas,matplotlib,numpy)

    关联 (Correlation) 关联图表用于可视化2个或更多变量之间的关系. 也就是说,一个变量如何相对于另一个变化. 散点图(Scatter plot) 散点图是用于研究两个变量之间关系的经典的和 ...

  4. seaborn线性关系数据可视化:时间线图|热图|结构化图表可视化

    一.线性关系数据可视化lmplot( ) 表示对所统计的数据做散点图,并拟合一个一元线性回归关系. lmplot(x, y, data, hue=None, col=None, row=None, p ...

  5. seaborn分布数据可视化:直方图|密度图|散点图

    系统自带的数据表格(存放在github上https://github.com/mwaskom/seaborn-data),使用时通过sns.load_dataset('表名称')即可,结果为一个Dat ...

  6. 数据可视化实例(十四):带标记的发散型棒棒糖图 (matplotlib,pandas)

    偏差 (Deviation) 带标记的发散型棒棒糖图 (Diverging Lollipop Chart with Markers) 带标记的棒棒糖图通过强调您想要引起注意的任何重要数据点并在图表中适 ...

  7. 数据可视化实例(十七):包点图 (matplotlib,pandas)

    排序 (Ranking) 包点图 (Dot Plot) 包点图表传达了项目的排名顺序,并且由于它沿水平轴对齐,因此您可以更容易地看到点彼此之间的距离. https://datawhalechina.g ...

  8. 数据可视化实例(九): 边缘箱形图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter7/chapter7 边缘箱形图 (Marginal Boxplot) 边缘箱图与边缘直方图具有相似的用 ...

  9. 数据可视化实例(七): 计数图(matplotlib,pandas)

    https://datawhalechina.github.io/pms50/#/chapter5/chapter5 计数图 (Counts Plot) 避免点重叠问题的另一个选择是增加点的大小,这取 ...

随机推荐

  1. 一张图搞懂Ubuntu安装时姓名、计算机名、用户名

    安装Ubuntu时会要求填写如下图的信息: 感谢:苏守坤 注意:上面的博客讲述了各自的具体含义,本篇博客只是说明这些名称在系统安装后会出现的位置.

  2. sourcetree 安装破解注册方法

    1.下载sourcetree安装包 2.点击安装到下图步骤 3.在网盘中下载accounts.json  文件,( 链接:https://pan.baidu.com/s/1tJd_xCh-B-oOwd ...

  3. Canvas 画布 H5

    前言: canvas 元素用于在网页上绘制图形. canvas 本身是一个标签,<canvas>标签定义图形,必须使用脚本来绘制图形,比如在画布上(Canvas)画一个红色矩形,渐变矩形, ...

  4. Cookie 和 Session 关系详解

     什么是 Cookie 和 Session ? 什么是 Cookie HTTP Cookie(也叫 Web Cookie或浏览器 Cookie)是服务器发送到用户浏览器并保存在本地的一小块数据,它会在 ...

  5. Spring整合JDBC temple

    一.Spring对Jdbc的支持 Spring为了提供对Jdbc的支持,在Jdbc API的基础上封装了一套实现,以此建立一个 JDBC 存取框架. 作为 Spring JDBC 框架的核心, JDB ...

  6. Arthas协助排查线上skywalking不可用问题

    前言 首先描述下问题的背景,博主有个习惯,每天上下班的时候看下skywalking的trace页面的error情况.但是某天突然发现生产环境skywalking页面没有任何数据了,页面也没有显示任何的 ...

  7. Linux 查看日志的时候常用命令总结

    Linux ~ 查看日志的常用命令总结 1.tail -n <行数>,显示文件的尾部n行内容. -f 循环读取,常用于查阅正在改变的日志文件. ① tail   -f  test.log  ...

  8. 新版MySQL开始使用时遇到的问题(时区、权限):

    新版MySQL(本人Server version: 8.0.15)在刚开始使用时遇到的问题: 查看mysql安装版本:命令窗口 时区问题解决(The server time zone value 'Ö ...

  9. Flask04-SQL

    from flask import render_template, flash, redirect from app import app from app import db, models fr ...

  10. C# Thread、lock

    class Program { private static readonly object obj = new object(); static void Main(string[] args) { ...