本来是只用Tenorflow的,但是因为TF有些Numpy特性并不支持,比如对数组使用列表进行切片,所以只能转战Pytorch了(pytorch是支持的)。还好Pytorch比较容易上手,几乎完美复制了Numpy的特性(但还有一些特性不支持),怪不得热度上升得这么快。

模型定义

  和TF很像,Pytorch也通过继承父类来搭建模型,同样也是实现两个方法。在TF中是__init__()和call(),在Pytorch中则是__init__()和forward()。功能类似,都分别是初始化模型内部结构和进行推理。其它功能比如计算loss和训练函数,你也可以继承在里面,当然这是可选的。下面搭建一个判别MNIST手写字的Demo,首先给出模型代码:

import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn,optim
from torchsummary import summary
from keras.datasets import mnist
from keras.utils import to_categorical
device = torch.device('cuda') #——————1—————— class ModelTest(nn.Module):
def __init__(self,device):
super().__init__()
self.layer1 = nn.Sequential(nn.Flatten(),nn.Linear(28*28,512),nn.ReLU())#——————2——————
self.layer2 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer3 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer4 = nn.Sequential(nn.Linear(512,10),nn.Softmax()) self.to(device) #——————3——————
self.opt = optim.SGD(self.parameters(),lr=0.01)#——————4——————
def forward(self,inputs): #——————5——————
x = self.layer1(inputs)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def get_loss(self,true_labels,predicts):
loss = -true_labels * torch.log(predicts) #——————6——————
loss = torch.mean(loss)
return loss
def train(self,imgs,labels):
predicts = model(imgs)
loss = self.get_loss(labels,predicts)
self.opt.zero_grad()#——————7——————
loss.backward()#——————8——————
self.opt.step()#——————9——————
model = ModelTest(device)
summary(model,(1,28,28),3,device='cuda') #——————10——————

  #1:获取设备,以方便后面的模型与变量进行内存迁移,设备名只有两种:'cuda'和'cpu'。通常是在你有GPU的情况下需要这样显式进行设备的设置,从而在需要时,你可以将变量从主存迁移到显存中。如果没有GPU,不获取也没事,pytorch会默认将参数都保存在主存中。

  #2:模型中层的定义,可以使用Sequential将想要统一管理的层集中表示为一层。

  #3:在初始化中将模型参数迁移到GPU显存中,加速运算,当然你也可以在需要时在外部执行model.to(device)进行迁移。

  #4:定义模型的优化器,和TF不同,pytorch需要在定义时就将需要梯度下降的参数传入,也就是其中的self.parameters(),表示当前模型的所有参数。实际上你不用担心定义优化器和模型参数的顺序问题,因为self.parameters()的输出并不是模型参数的实例,而是整个模型参数对象的指针,所以即使你在定义优化器之后又定义了一个层,它依然能优化到。当然优化器你也可以在外部定义,传入model.parameters()即可。这里定义了一个随机梯度下降。

  #5:模型的前向传播,和TF的call()类似,定义好model()所执行的就是这个函数。

  #6:我将获取loss的函数集成在了模型中,这里计算的是真实标签和预测标签之间的交叉熵。

  #7/8/9:在TF中,参数梯度是保存在梯度带中的,而在pytorch中,参数梯度是各自集成在对应的参数中的,可以使用tensor.grad来查看。每次对loss执行backward(),pytorch都会将参与loss计算的所有可训练参数关于loss的梯度叠加进去(直接相加)。所以如果我们没有叠加梯度的意愿的话,那就要在backward()之前先把之前的梯度删除。又因为我们前面已经把待训练的参数都传入了优化器,所以,对优化器使用zero_grad(),就能把所有待训练参数中已存在的梯度都清零。那么梯度叠加什么时候用到呢?比如批量梯度下降,当内存不够直接计算整个批量的梯度时,我们只能将批量分成一部分一部分来计算,每算一个部分得到loss就backward()一次,从而得到整个批量的梯度。梯度计算好后,再执行优化器的step(),优化器根据可训练参数的梯度对其执行一步优化。

  #10:使用torchsummary函数显示模型结构。奇怪为什么不把这个继承在torch里面,要重新安装一个torchsummary库。

训练及可视化

  接下来使用模型进行训练,因为pytorch自带的MNIST数据集并不好用,所以我使用的是Keras自带的,定义了一个获取数据的生成器。下面是完整的训练及绘图代码(50次迭代记录一次准确率):

import numpy as np
import matplotlib.pyplot as plt
import torch
from torch import nn,optim
from torchsummary import summary
from keras.datasets import mnist
from keras.utils import to_categorical
device = torch.device('cuda') #——————1—————— class ModelTest(nn.Module):
def __init__(self,device):
super().__init__()
self.layer1 = nn.Sequential(nn.Flatten(),nn.Linear(28*28,512),nn.ReLU())#——————2——————
self.layer2 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer3 = nn.Sequential(nn.Linear(512,512),nn.ReLU())
self.layer4 = nn.Sequential(nn.Linear(512,10),nn.Softmax()) self.to(device) #——————3——————
self.opt = optim.SGD(self.parameters(),lr=0.01)#——————4——————
def forward(self,inputs): #——————5——————
x = self.layer1(inputs)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def get_loss(self,true_labels,predicts):
loss = -true_labels * torch.log(predicts) #——————6——————
loss = torch.mean(loss)
return loss
def train(self,imgs,labels):
predicts = model(imgs)
loss = self.get_loss(labels,predicts)
self.opt.zero_grad()#——————7——————
loss.backward()#——————8——————
self.opt.step()#——————9——————
def get_data(device,is_train = True, batch = 1024, num = 10000):
train_data,test_data = mnist.load_data()
if is_train:
imgs,labels = train_data
else:
imgs,labels = test_data
imgs = (imgs/255*2-1)[:,np.newaxis,...]
labels = to_categorical(labels,10)
imgs = torch.tensor(imgs,dtype=torch.float32).to(device)
labels = torch.tensor(labels,dtype=torch.float32).to(device)
i = 0
while(True):
i += batch
if i > num:
i = batch
yield imgs[i-batch:i],labels[i-batch:i]
train_dg = get_data(device, True,batch=4096,num=60000)
test_dg = get_data(device, False,batch=5000,num=10000) model = ModelTest(device)
summary(model,(1,28,28),11,device='cuda')
ACCs = []
import time
start = time.time()
for j in range(20000):
#训练
imgs,labels = next(train_dg)
model.train(imgs,labels) #验证
img,label = next(test_dg)
predicts = model(img)
acc = 1 - torch.count_nonzero(torch.argmax(predicts,axis=1) - torch.argmax(label,axis=1))/label.shape[0]
if j % 50 == 0:
t = time.time() - start
start = time.time()
ACCs.append(acc.cpu().numpy())
print(j,t,'ACC: ',acc)
#绘图
x = np.linspace(0,len(ACCs),len(ACCs))
plt.plot(x,ACCs)

  准确率变化图如下:

注意事项

  需要注意的是,pytorch的tensor基于numpy的array,它们是共享内存的。也就是说,如果你把tensor直接插入一个列表,当你修改这个tensor时,列表中的这个tensor也会被修改;更容易被忽略的是,即使你用tensor.detach.numpy(),先将tensor转换为array类型,再插入列表,当你修改原本的tensor时,列表中的这个array也依然会被修改。所以如果我们只是想保存tensor的值而不是整个对象,就要使用np.array(tensor)将tensor的值复制出来。

使用Pytorch搭建模型的更多相关文章

  1. [炼丹术]使用Pytorch搭建模型的步骤及教程

    使用Pytorch搭建模型的步骤及教程 我们知道,模型有一个特定的生命周期,了解这个为数据集建模和理解 PyTorch API 提供了指导方向.我们可以根据生命周期的每一个步骤进行设计和优化,同时更加 ...

  2. 目标检测-基于Pytorch实现Yolov3(1)- 搭建模型

    原文地址:https://www.cnblogs.com/jacklu/p/9853599.html 本人前段时间在T厂做了目标检测的项目,对一些目标检测框架也有了一定理解.其中Yolov3速度非常快 ...

  3. 一文弄懂pytorch搭建网络流程+多分类评价指标

    讲在前面,本来想通过一个简单的多层感知机实验一下不同的优化方法的,结果写着写着就先研究起评价指标来了,之前也写过一篇:https://www.cnblogs.com/xiximayou/p/13700 ...

  4. Pytorch线性规划模型 学习笔记(一)

    Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...

  5. pytorch搭建简单网络

    pytorch搭建一个简单神经网络 import torch import torch.nn as nn # 定义数据 # x:输入数据 # y:标签 x = torch.Tensor([[0.2, ...

  6. PyTorch保存模型与加载模型+Finetune预训练模型使用

    Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...

  7. python日记:用pytorch搭建一个简单的神经网络

    最近在学习pytorch框架,给大家分享一个最最最最基本的用pytorch搭建神经网络并且训练的方法.本人是第一次写这种分享文章,希望对初学pytorch的朋友有所帮助! 一.任务 首先说下我们要搭建 ...

  8. TensorFlow搭建模型方式总结

    引言 TensorFlow提供了多种API,使得入门者和专家可以根据自己的需求选择不同的API搭建模型. 基于Keras Sequential API搭建模型 Sequential适用于线性堆叠的方式 ...

  9. 奉献pytorch 搭建 CNN 卷积神经网络训练图像识别的模型,配合numpy 和matplotlib 一起使用调用 cuda GPU进行加速训练

    1.Torch构建简单的模型 # coding:utf-8 import torch class Net(torch.nn.Module): def __init__(self,img_rgb=3,i ...

随机推荐

  1. 实现队列的基本操作(数据结构)-python版

    class Queue: def __init__(self): self.entries = [] self.length = 0 self.front = 0 def put(self, item ...

  2. 被产品经理怼了,线上出Bug为啥你不知道

    前言 前几天跟读者聊天,他说被产品经理给怼了.原因是线上出 Bug 了,最后是客户反馈才知道的. 我就问他:你们是不是没做监控? 读者:我们是刚成立的创业团队,目前最重要的就是堆功能,很多基础设施都没 ...

  3. 有关java反射的几个小方法的作用和区别

    1.Class类中 getXXX()和getDeclaredXXX()的作用和区别: 前者获取某个类的所有公共(public)的字段(or方法or构造函数),包括父类.后者获取所有的字段(or方法or ...

  4. xxe-xml外部实体注入

    XML文件格式及作用 copy至:https://www.runoob.com/xml/xml-tutorial.html 学习xxe为什么要了解XML和DTD,直接跳至Xxe查看: 定义&作 ...

  5. Object.defineProperty和proxy

    Object.defineProperty问题 Object.defineProperty() 无法监控到数组下标的变化.vue只能通过以下几种方法来监听 pop() shift() unshift( ...

  6. Centos-对比文件差异-diff

    diff 比较文件差异 相关选项 -c 显示全部内容,并标记不同之处 -b 忽略行尾空格,并认为字符串中一个或多个空格视为相同 -r  当比较双方都是目录时,会比较子目录中的文件 -s 当两个文件相同 ...

  7. CentOS7的下载及虚拟机的创建

    一.CentOS的安装 1,首先打开开源镜像网站:www.mirrors.163.com(网易开源镜像网站),www.mirrors.aliyun.com(阿里云开源镜像网站) 以网易为例 2.点击进 ...

  8. Java学习day01

    1.Java的种类: JavaSE(Java标准版) JavaEE(Java企业版) JavaME(Java微型版) 其中,JavaSE是基础,以后的方向是JavaEE(Java企业版) 2.什么是J ...

  9. makefile从入门到入门

    makefile文件是用来帮助编译和管理C++项目代码的,需要配合make命令使用.makefile里也可以执行shell操作,具备一部分.sh脚本的功能. makefile格式 makefile内容 ...

  10. 091 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 02 static关键字 01 static关键字(上)

    091 01 Android 零基础入门 02 Java面向对象 02 Java封装 01 封装的实现 03 # 088 01 Android 零基础入门 02 Java面向对象 02 Java封装 ...