【倍增】洛谷P3379 倍增求LCA
题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:
第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:
输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
该树结构如下:
第一次询问:2、4的最近公共祖先,故为4。
第二次询问:3、2的最近公共祖先,故为4。
第三次询问:3、5的最近公共祖先,故为1。
第四次询问:1、2的最近公共祖先,故为4。
第五次询问:4、5的最近公共祖先,故为4。
故输出依次为4、4、1、4、4。
题解
倍增求LCA的板子。。。
反正就是处理好x向上1<<i 位的节点。。。
然后从深度深的往上跳。。。
代码
//by 减维
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<map>
#include<bitset>
#include<algorithm>
#define ll long long
using namespace std; struct edge{
int to,ne;
}e[]; int n,m,s,ecnt,dep[],head[],f[][]; void add(int x,int y)
{
e[++ecnt].to=y;
e[ecnt].ne=head[x];
head[x]=ecnt;
} void dfs(int x,int fa)
{
dep[x]=dep[fa]+;
f[x][]=fa;
for(int i=;(<<i)<=dep[x];++i)
f[x][i]=f[f[x][i-]][i-];
for(int i=head[x];i;i=e[i].ne)
{
int dd=e[i].to;
if(dd==fa)continue;
dfs(dd,x);
}
} int lca(int x,int y)
{
if(dep[x]>dep[y])swap(x,y);
for(int i=;i>=;--i)
if(dep[x]<=dep[y]-(<<i))y=f[y][i];
if(x==y)return x;
for(int i=;i>=;i--)
{
if(f[x][i]==f[y][i])continue;
else x=f[x][i],y=f[y][i];
}
return f[x][];
} int main()
{
scanf("%d%d%d",&n,&m,&s);
for(int x,y,i=;i<n;++i)
{
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
dfs(s,);
for(int x,y,i=;i<=m;++i)
{
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y));
}
}
【倍增】洛谷P3379 倍增求LCA的更多相关文章
- 【RMQ】洛谷P3379 RMQ求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【Tarjan】洛谷P3379 Tarjan求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷P3379倍增LCA
传送门 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> ...
- 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))
倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...
- 【树链剖分】洛谷P3379 树链剖分求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷 P3379 【模板】最近公共祖先(LCA)
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷P3379 【模板】最近公共祖先(LCA)(树链剖分)
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 洛谷P2680 运输计划 [LCA,树上差分,二分答案]
题目传送门 运输计划 Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n?1 条双向航道,每条航道建立在两个星球之间, 这 n?1 条航道连通了 L 国的所 ...
- 【洛谷 P4211】[LNOI2014]LCA(树链剖分,差分)
题目链接 看到题目肯定首先想到要求LCA(其实是我菜),可乍一看,n与q的规模为5W, 求LCA的复杂度为\(O(logN)\),那么总时间复杂度为\(O(nq\ log\ n)\). 怎么搞呢? 会 ...
随机推荐
- Jenkins+tomcat+jdk setup
Jenkins download: http://jenkins-ci.org/ jdk version:jdk-7u45-linux-x64.tar.gz tomcat version:apache ...
- 【分享】iTOP4412开发板-Bluetooth移植文档
[分享]iTOP4412开发板-Bluetooth移植文档 最近须要把Bluetooth移植到iTOP-4412 开发平台.查阅了相关资料,经过一段时间的研究.调试,最终成功的将蓝牙功能移植到了开发板 ...
- Ajax顺序执行
循环中的Ajax 在前后端分离的项目中,Ajax是连接前后端的枢纽. 需求:有一个需要循环发起n次的请求,但是n次循环传参不同,我并不知道n是多少,并且要求能够保证返回顺序.JSONP用同步锁无效 示 ...
- iBATIS使用$和#的一些理解
我们在使用iBATIS时会经常用到#这个符号. 比如: sql 代码 select * from member where id =#id# 然后,我们会在程序中给id这个变量传递一个值,iBATIS ...
- 【Jenkins】通过ANT构建JMeter任务时提示找不到jtl文件时的解决方法
- python for循环巧妙运用(迭代、列表生成式)
200 ? "200px" : this.width)!important;} --> 介绍 我们可以通过for循环来迭代list.tuple.dict.set.字符串,di ...
- JDK源码阅读(1)_简介+ java.io
1.简介 针对这一个版块,主要做一个java8的源码阅读笔记.会对一些在javaWeb中应用比较广泛的java包进行精读,附上注释.对于容易混淆的知识点给出相应的对比分析. 精读的源码顺序主要如下: ...
- strtus2中的default-action-ref无效的解决方法
strtus2中的default-action-ref的作用是我们在浏览器中访问错误的地址时可以跳转到自己设置的错误页面,而不是令人尴尬的系统错误页面,这个系统错误很常见,就是提示在namespace ...
- Python的HTTP服务实例
1.前言 今天需要实现一个Pyhton的http服务,与Web的JS进行交换. 2.实例代码 支持HEAD.GET.POST方法,将参数转换为JSON格式,返回结果以JSON字符串返回. import ...
- Overlapping rectangles判断两个矩形是否重叠的问题 C++
Given two rectangles, find if the given two rectangles overlap or not. A rectangle is denoted by pro ...