柱爷与远古法阵

Time Limit: 125/125MS (Java/Others)     Memory Limit: 240000/240000KB (Java/Others)
Submit Status

众所周知,柱爷的数学非常好,尤其擅长概率论!

某日柱爷在喵哈哈村散步,无意间踏入了远古法阵!

法阵很奇怪,是一个长度为NN的走廊,初始时柱爷在最左边,现在柱爷要到最右边去!

柱爷的行动方式如下:

  • 每个回合柱爷会投一次骰子,根据骰子上的点数每个回合柱爷会投一次骰子,根据骰子上的点数X,柱爷会相应的往右边移动,柱爷会相应的往右边移动X步.步.

  • 骰子的数值是骰子的数值是1到到6,取到每面的概率相同,取到每面的概率相同

  • 在某些位置可能有传送门,一旦柱爷在该回合结束后在这个位置上,会被强制传送到传送门的另外一边在某些位置可能有传送门,一旦柱爷在该回合结束后在这个位置上,会被强制传送到传送门的另外一边

  • 传送门是单向的,同时每个位置不会有超过1个传送门,同时不会存在a→b,b→c这种情况传送门是单向的,同时每个位置不会有超过1个传送门,同时不会存在a→b,b→c这种情况

  • 在任意时刻柱爷都必须保证在法阵内,也就说如果在这一回合结束后柱爷的位置在法阵外,那么这回合柱爷将什么都不做在任意时刻柱爷都必须保证在法阵内,也就说如果在这一回合结束后柱爷的位置在法阵外,那么这回合柱爷将什么都不做

那么请问柱爷到达最右边的期望回合数是多少呢?或者是永远都无法到达?

Input

第一行两个整数NN,MM,分别表示法阵的长度和传送门的数量

接下来MM行,每行两个整数uu,vv,表示从uu到vv有一扇传送门

数据保证:

  • 1≤N≤3001≤N≤300

  • 0≤M≤[N−22]0≤M≤[N−22]

  • 1<u<N,1≤v≤N,u≠v1<u<N,1≤v≤N,u≠v

Output

输出仅一行,表示期望的回合数,如果永远不能到达,输出−1−1.

答案误差在10−610−6以内将被忽略

Sample input and output

Sample Input Sample Output
100 0
33.0476190476
100 2
2 3
99 100
29.8571428571

Hint

你可能需要一些概率论 & 线性代数的知识才能解决本题!

Source

2016 UESTC Training for Dynamic Programming
题目链接:http://acm.uestc.edu.cn/#/problem/show/1330
分析:第一次学高斯消元,看着卿学姐的视频长大的QAQ,然后,,,,,卿学姐的代码输出结果,,,,一直为0.0000000,我奋力找了5个小时的bug,最后竟然错在输出的精度问题,要取double,我也不知道为啥QAQ!
下面给出AC代码:
 #include <bits/stdc++.h>
using namespace std;
const int maxn=;
const long double eps=1e-;
long double a[maxn][maxn];//构造的高斯消元的矩阵,代表第i个方程式的第j个系数是多少 ,精度要求很高
int n,m,f[maxn],x,y;
inline int read()//读入优化
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
inline void write(int x)//输出优化
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
write(x/);
putchar(x%+'');
}
int main()
{
n=read();
m=read();
for(int i=;i<=n;i++)
f[i]=i;
for(int i=;i<=m;i++)//如果有传送的话,到哪里
f[read()]=read();
//建立增广矩阵的过程
for(int i=;i<n;i++)
{
a[i][i]=;//第一个方程
if(f[i]!=i)
a[i][f[i]]=-;//如果有传送门 系数直接抵消 x-y=0 相当于 x=y
else
{
a[i][n+]=;//方程右边的常数
for(int j=;j<=;j++)
{
if(i+j<=n)
a[i][i+j]-=1.0;
else
a[i][i]-=1.0;//另外一个方程
}
}
}
a[n][n]=1.0;//最后的方程
a[n][n+]=;
//高斯消元的过程
for(int i=;i<=n;i++)
{
int p=i;
for(int j=i+;j<=n;j++)
{
if(fabs(a[j][i])>eps)//向下查找第j个系数不为0的方程
p=j;
}
if(fabs(a[p][i])>eps)
{
for(int j=i;j<=n+;j++)
swap(a[i][j],a[p][j]);//把方程移上来
for(int j=i+;j<=n;j++)//向下消元 同时除去其他的系数
{
if(fabs(a[j][i])>eps)
{
long double k=a[j][i]/a[i][i];//消元
for(int t=i;t<=n+;t++)
a[j][t]-=a[i][t]*k;//系数相减
}
}
}
}
//回代过程
for(int i=n;i>=;i--)
{
for(int j=i+;j<=n;j++)
{
if(fabs(a[i][j])>eps)
a[i][n+]-=a[i][j]*a[j][n+];//用已知的解求未知解
}
if(abs(a[i][i])<=eps&&abs(a[i][n+])>eps)//如果出现矛盾
{
printf("-1\n");
return ;
}
a[i][n+]/=a[i][i];//求出当前的解
}
printf("%.12lf\n",(double)a[][n+]);//a[i][n+1]就是第i个未知数的解
return ;
}

CDOJ 1330 柱爷与远古法阵【高斯消元,卡精度】的更多相关文章

  1. CDOJ 1330 柱爷与远古法阵(高斯消元)

    CDOJ 1330 柱爷与远古法阵(高斯消元) 柱爷与远古法阵 Time Limit: 125/125MS (Java/Others)     Memory Limit: 240000/240000K ...

  2. UESTC 1330 柱爷与远古法阵【高斯消元】

    题目链接[http://acm.uestc.edu.cn/#/problem/show/1330] 题意:有一个长度为L(L <= 300)的长廊,有一人站在最左边,他要到最右边去,他每次可以走 ...

  3. UVALive - 6185 Find the Outlier暴力填表+高斯消元+卡eps

    https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f ...

  4. hihoCoder #1195 高斯消元·一

    题意:便利店老板为了促销,推出了组合包的形式,将不同数量的各类商品打包成一个组合.比如2袋薯片,1听可乐的组合只要5元,而1袋薯片,2听可乐的组合只要4元.通过询问老板知道:一共有N种不同的商品和M种 ...

  5. 洛谷P4457/loj#2513 [BJOI2018]治疗之雨(高斯消元+概率期望)

    题面 传送门(loj) 传送门(洛谷) 题解 模拟赛的时候只想出了高斯消元然后死活不知道怎么继续--结果正解居然就是高斯消元卡常? 首先有个比较难受的地方是它一个回合可能不止扣一滴血--我们得算出\( ...

  6. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  7. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  8. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  9. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

随机推荐

  1. JavaWeb之Java Servlet完全教程(转)

    Servlet 是一些遵从Java Servlet API的Java类,这些Java类可以响应请求.尽管Servlet可以响应任意类型的请求,但是它们使用最广泛的是响应web方面的请求. Servle ...

  2. JAVA中的集合与排序

    一:常见的集合类 Collection接口  和   Map接口 Collection ①:collection是最常见的集合的上级接口. ②:继承自collection的常用接口有List,Set, ...

  3. BZOJ1036 (其实这只是一份板子)

    我说我是不是完蛋了啊... ...昨天考试线段树写错,调了好久才调回来:今天做这道树链剖分辣鸡操作题,TM写错了4个地方!先是建树为了省常数打了一个build结果初值赋错了,然后又是线段树!getma ...

  4. C#设计模式之二十二备忘录模式(Memeto Pattern)【行为型】

    一.引言   今天我们开始讲"行为型"设计模式的第十个模式,该模式是[备忘录模式],英文名称是:Memento Pattern.按老规矩,先从名称上来看看这个模式,个人的最初理解就 ...

  5. readAsDataURL(file) & readAsText(file, encoding)

      readAsDataURL(file)会把文件内容转换为data类型的URL: data:text/plain;base64,b3JkZXItaWQJb3JkZXItaXRlbS1p... 这种d ...

  6. kibana提示“Your Kibana index is out of date, reset it or use the X-Pack upgrade assistant.”

    =============================================== 2017/12/15_第1次修改                       ccb_warlock = ...

  7. 我搞zabbix的那两天(2)

    摘要:前一篇(我搞zabbix的那两天(1))我介绍了Zabbix的安装部署以及遇到的问题,这一篇将介绍zabbix 使用及短信等告警实现!!! Zabbix主界面及汉化方法介绍 1.1 初始化主界面 ...

  8. ES6(一) let and const

    1.let 用于变量声明,仅在块级作用域内有效. ES6新增了块级作用域,在ES5中没有块级作用域这个概念. { let a = 10; var b = 1; } console.log(b); // ...

  9. C#图解教程第一章 C#和.NET框架

    1.1 在.NET之前 C#发音:see shap 1.1.1 20世纪90年代后期的Windows编程  20世纪90年代后期各语言缺点:   1.纯Win32 API不是面向对象的,而且工作量比M ...

  10. python科学计算_scipy_常数与优化

    scipy在numpy的基础上提供了众多的数学.科学以及工程计算中常用的模块:是强大的数值计算库: 1. 常数和特殊函数 scipy的constants模块包含了众多的物理常数: import sci ...