Java与算法之(7) - 完全二叉树
- 树
下图是一“棵”树的样子。树这个名称起的很形象,整个数据结构由根、枝、叶组成,其中1为根节点,2、3是1的子节点,4、5、6、8、9、10这几个没有子节点的节点称为叶节点。
节点的度:一个节点的子树的数量称为该节点的度。例如,图中节点2的度为3,节点3的度为2。
树的度:一棵树的度是指该树中节点的最大度数。如图中树的度是3。
节点的层数:每个节点都处在一定的层次上,图中根节点在第1层,2、3节点在第二层。
树的深度:一棵树中节点的最大层数称为树的深度。如中所示的树的深度为4。
- 二叉树
二叉树是一种特殊的树,特点是每个节点最多有两个子节点。上图中的树去掉节点4就符合二叉树的定义了,如下图:
- 完全二叉树
除二叉树最后一层外,其他各层的节点数都达到最大个数,且最后一层从左向右的叶节点连续存在,只缺右侧若干节点,就是完全二叉树。
如下图,每一层都是从左向右摆放节点,每个节点都是摆满两个子节点后才向右移动到下一个节点,一层摆满后向下移动一层,直到摆放完所有数字。这样得到的二叉树就是完全二叉树,中间有任何缺失的节点就不能称为完全二叉树。
完全二叉树的一个重要特性就是节点编号的规律,这是理解完全二叉树构建程序的根本。看上图,仍然按照从左到右、从上到下的规律从1开始为节点编号,图中节点上的数字正好与节点编号相同,可以看出:
如果一个父节点的编号是x,那么它左子节点的编号就是2x,右子节点的编号就是2x+1。
在程序中,二叉树通常采用链式结构存储,链中的每一个节点由节点数据、左子节点指针、右子节点指针组成
- class Node {
- Node leftChild;
- Node rightChild;
- int data;
- public Node(int data) {
- this.data = data;
- }
- }
有时候为了查找父节点方便,还可以为节点定义增加一个指向父节点的指针。
假设要用1-9这九个数字构建二叉树,那么先创建好九个节点,然后设置这些节点的左右子节点指针。观察多个节点数不等的完全二叉树可以得出规律,对于x个节点组成的二叉树,只有前x / 2(取整)个节点具有子节点,且第x / 2个节点可能只有左子节点。
理解了这些后,代码就很简单了
- import java.util.LinkedList;
- import java.util.List;
- /**
- * Created by autfish on 2016/9/13.
- */
- public class BinTreeByList {
- List<Node> nodes = null;
- private int[] datas = null;
- private int number;
- public BinTreeByList(int[] datas) {
- this.datas = datas;
- this.number = this.datas.length;
- }
- public void create() {
- nodes = new LinkedList<>();
- for(int i = 0; i < this.number; i++) {
- nodes.add(new Node(datas[i]));
- }
- //如果父节点编号为x, 那么左子节点的编号是2x, 右子节点的编号是2x+1
- for(int noteId = 1; noteId <= this.number / 2; noteId++) {
- //索引从0开始, 需要在节点编号上减1
- nodes.get(noteId - 1).leftChild = nodes.get(noteId * 2 - 1);
- if(noteId * 2 < this.number)
- nodes.get(noteId - 1).rightChild = nodes.get(noteId * 2);
- }
- }
- private static class Node {
- Node leftChild;
- Node rightChild;
- int data;
- public Node(int data) {
- this.data = data;
- }
- }
- }
接下来的问题是,二叉树是非线性结构,如果拿到一个已经构建好的二叉树结构,如何遍历其全部节点呢。遍历的定义是按一定的规则和顺序走遍二叉树的所有节点,使每一个节点都被访问一次,而且只被访问一次。
先看概念:
先序遍历(DLR):称为先根次序遍历,即先访问根节点,再按先序遍历左子树,最后按先序遍历右子树。
中序遍历(LDR):称为中根次序遍历,即先按中序遍历左子树,再访问根节点,最后按中序遍历右子树。
后序遍历(LRD):称为后根次序遍历,即先按后序遍历左子树,再按后序遍历右子树,最后访问根节点。
三种方式遍历的代码如下:
- public void preOrder(Node node) {
- if(node == null) {
- return;
- }
- System.out.print(node.data + " ");
- preOrder(node.leftChild);
- preOrder(node.rightChild);
- }
- public void inOrder(Node node) {
- if(node == null) {
- return;
- }
- inOrder(node.leftChild);
- System.out.print(node.data + " ");
- inOrder(node.rightChild);
- }
- public void postOrder(Node node) {
- if(node == null) {
- return;
- }
- postOrder(node.leftChild);
- inOrder(node.rightChild);
- System.out.print(node.data + " ");
- }
测试代码:
- public static void main(String[] args) {
- int[] numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
- BinTreeByList tree = new BinTreeByList(numbers);
- tree.create();
- System.out.print("先序遍历");
- tree.preOrder(tree.nodes.get(0));
- System.out.println();
- System.out.print("中序遍历");
- tree.inOrder(tree.nodes.get(0));
- System.out.println();
- System.out.print("后续遍历");
- tree.postOrder(tree.nodes.get(0));
- }
输出:
- 先序遍历1 2 4 8 9 5 3 6 7
- 中序遍历8 4 9 2 5 1 6 3 7
- 后续遍历8 9 4 5 2 6 3 7 1
其实,完全二叉树还有一种更简单的存储方式,即一维数组。也就是说int[] {1, 2, 3, 4, 5, 6, 7, 8, 9}本身就是一个完全二叉树了。
根据数字在数组中的索引即可以计算出数字的节点位置,而且仍然可以对这个二叉树做三种方式的遍历。
- /**
- * 完全二叉树
- * Created by autfish on 2016/9/8.
- */
- public class BinTreeByArray {
- private int[] numbers;
- public BinTreeByArray(int[] numbers) {
- this.numbers = numbers;
- }
- /**
- * 先序遍历
- * 根节点 -> 遍历左子树 -> 遍历右子树
- * @param nodeId
- */
- public void preOrder(int nodeId) {
- if(nodeId <= numbers.length) {
- System.out.print(numbers[nodeId - 1] + " ");
- preOrder(nodeId * 2);
- preOrder(nodeId * 2 + 1);
- }
- }
- /**
- * 中序遍历
- * 左子树 -> 父节点 -> 右子树
- * @param nodeId
- */
- public void inOrder(int nodeId) {
- if(nodeId <= numbers.length) {
- inOrder(nodeId * 2);
- System.out.print(numbers[nodeId - 1] + " ");
- inOrder(nodeId * 2 + 1);
- }
- }
- /**
- * 后续遍历
- * 左子树 -> 右子树 -> 父节点
- * @param nodeId
- */
- public void postOrder(int nodeId) {
- if(nodeId <= numbers.length) {
- postOrder(nodeId * 2);
- inOrder(nodeId * 2 + 1);
- System.out.print(numbers[nodeId - 1] + " ");
- }
- }
- public static void main(String[] args) {
- int[] numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
- for(int x = 0; x < numbers.length; x++) {
- System.out.print(numbers[x] + " ");
- }
- System.out.println();
- BinTreeByArray tree = new BinTreeByArray(numbers);
- System.out.print("先序遍历");
- tree.preOrder(1);
- System.out.println();
- System.out.print("中序遍历");
- tree.inOrder(1);
- System.out.println();
- System.out.print("后续遍历");
- tree.postOrder(1);
- }
- }
用数组存储二叉树的一个常见应用就是堆排序,下文分解。
Java与算法之(7) - 完全二叉树的更多相关文章
- Java与算法之(13) - 二叉搜索树
查找是指在一批记录中找出满足指定条件的某一记录的过程,例如在数组{ 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 }中查找数字15,实现代码很简单 ...
- 史上最全的java随机数生成算法分享(转)
这篇文章主要介绍了史上最全的java随机数生成算法,我分享一个最全的随机数的生成算法,最代码的找回密码的随机数就是用的这个方法 String password = RandomUtil.generat ...
- 常用Java排序算法
常用Java排序算法 冒泡排序 .选择排序.快速排序 package com.javaee.corejava; public class DataSort { public DataSort() { ...
- 使用Java练习算法常用的基本操作
一.使用Java练习算法常常需要使用控制台的数据输入和输出,下面记录一下基本的使用方法: 基本用法 import java.util.*; public class Main { public sta ...
- JAVA经典算法40题及解答
JAVA经典算法40题 [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分 ...
- Java基础算法集50题
最近因为要准备实习,还有一个蓝桥杯的编程比赛,所以准备加强一下算法这块,然后百度了一下java基础算法,看到的都是那50套题,那就花了差不多三个晚自习的时间吧,大体看了一遍,做了其中的27道题,有一些 ...
- Java经典算法四十例编程详解+程序实例
JAVA经典算法40例 [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程 ...
- Java排序算法之直接选择排序
Java排序算法之直接选择排序 基本过程:假设一序列为R[0]~R[n-1],第一次用R[0]和R[1]~R[n-1]相比较,若小于R[0],则交换至R[0]位置上.第二次从R[1]~R[n-1]中选 ...
- JAVA经典算法40题
1: JAVA经典算法40题 2: [程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 3 ...
随机推荐
- 《调试九法——软硬件错误的排查之道》【PDF】下载
<调试九法--软硬件错误的排查之道>[PDF]下载链接: https://u253469.ctfile.com/fs/253469-231196352 内容简介 <调试九法:软硬件错 ...
- 【java设计模式】【结构模式Structural Pattern】合成模式Composite Pattern
package com.tn.pattern; import java.util.Vector; public class Client { public static void main(Strin ...
- 【java】io流之字节输出流:java.io.OutputStream类及子类java.io.FileOutputStream
package 文件操作; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; impo ...
- iOS手机截屏使用
.截屏 保存 .data //登录成功进行截屏 //截取屏幕大小 UIGraphicsBeginImageContext([[UIScreen mainScreen]bounds].size); [s ...
- oracle初级(续)
有志者.事竟成,破釜沉舟,百二秦关终属楚: 苦心人.天不负,卧薪尝胆,三千越甲可吞吴. oracle基本简单的用法,之前的笔记稍作整理一下,希望对各位有用,如有问题可在下方留言,所有SQL都是经过or ...
- 深入理解用户权限rwx
其实在UNIX的实现中,文件权限用12个二进制位表示,如果该位置上的值是1,表示有相应的权限,如果是0则没有相应权限第11位为SUID位,第10位为SGID位,第9位为sticky位,第8-0位对应于 ...
- C#图解教程第一章 C#和.NET框架
1.1 在.NET之前 C#发音:see shap 1.1.1 20世纪90年代后期的Windows编程 20世纪90年代后期各语言缺点: 1.纯Win32 API不是面向对象的,而且工作量比M ...
- springMVC(6)---处理模型数据
springMVC(6)---处理模型数据 之前一篇博客,写个怎么获取前段数据:springMVC(2)---获取前段数据,这篇文章写怎么从后端往前端传入数据. 模型数据类型 ...
- Head First设计模式之抽象工厂模式
一.定义 给客户端提供一个接口,可以创建多个产品族中的产品对象 ,而且使用抽象工厂模式还要满足一下条件: 1)系统中有多个产品族,而系统一次只可能消费其中一族产品. 2)同属于同一个 ...
- [Redis源码阅读]dict字典的实现
dict的用途 dict是一种用于保存键值对的抽象数据结构,在redis中使用非常广泛,比如数据库.哈希结构的底层. 当执行下面这个命令: > set msg "hello" ...