HDU 1014 Uniform Generator【GCD,水】
Uniform Generator
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 29336 Accepted Submission(s): 11694
seed(x+1) = [seed(x) + STEP] % MOD
where '%' is the modulus operator.
Such
a function will generate pseudo-random numbers (seed) between 0 and
MOD-1. One problem with functions of this form is that they will always
generate the same pattern over and over. In order to minimize this
effect, selecting the STEP and MOD values carefully can result in a
uniform distribution of all values between (and including) 0 and MOD-1.
For
example, if STEP = 3 and MOD = 5, the function will generate the series
of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this
example, all of the numbers between and including 0 and MOD-1 will be
generated every MOD iterations of the function. Note that by the nature
of the function to generate the same seed(x+1) every time seed(x) occurs
means that if a function will generate all the numbers between 0 and
MOD-1, it will generate pseudo-random numbers uniformly with every MOD
iterations.
If STEP = 15 and MOD = 20, the function generates
the series 0, 15, 10, 5 (or any other repeating series if the initial
seed is other than 0). This is a poor selection of STEP and MOD because
no initial seed will generate all of the numbers from 0 and MOD-1.
Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.
each line of input, your program should print the STEP value right-
justified in columns 1 through 10, the MOD value right-justified in
columns 11 through 20 and either "Good Choice" or "Bad Choice"
left-justified starting in column 25. The "Good Choice" message should
be printed when the selection of STEP and MOD will generate all the
numbers between and including 0 and MOD-1 when MOD numbers are
generated. Otherwise, your program should print the message "Bad
Choice". After each output test set, your program should print exactly
one blank line.
3 5 Good Choice 15 20 Bad Choice 63923 99999 Good Choice
下面解释一下为什么GCD是正解呢!
因为当GCD(step, mod) == 1的时候,那么第一次得到序列:x0, x0 + step, x0 + step…… 那么mod之后,必然下一次重复出现比x0大的数必然是x0+1,为什么呢?
因为(x0 + n*step) % mod; 且不需要考虑x0 % mod的值为多少,因为我们想知道第一次比x0大的数是多少,那么就看n*step%mod会是多少了,因为GCD(step, mod) == 1,那么n*step%mod必然是等于1,故此第一次重复出现比x0大的数必然是x0+1,那么第二次出现比x0大的数必然是x0+2,以此类推,就可得到必然会出现所有0到mod-1的数,然后才会重复出现x0.
当GCD(step, mod) != 1的时候,可以推出肯定跨过某些数了,这里不推了。
然后可以扩展这个结论,比如如果使用函数 x(n) = (x(n-1) * a + b)%mod;增加了乘法因子a,和步长b了;
那么如果是Good Choice,就必然需要GCD(a, mod) == 1,而且GCD(b, mod) == 1;
这里就偷懒不证明这个扩展结论了,而且证明这个结论需要用到线性模(Congruence)和乘法逆元的知识了。
下面给出AC代码:
#include <bits/stdc++.h>
using namespace std;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int main()
{
int step,mod;
while(scanf("%d%d",&step,&mod)!=EOF)
{
if(gcd(step,mod)==)
printf("%10d%10d Good Choice\n\n",step,mod);
else
printf("%10d%10d Bad Choice\n\n",step,mod);
}
return ;
}
HDU 1014 Uniform Generator【GCD,水】的更多相关文章
- HDU 1014 Uniform Generator(模拟和公式)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1014 Uniform Generator Time Limit: 2000/1000 MS (Java ...
- HDU 1014:Uniform Generator
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator(题解)
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator 题解
找到规律之后本题就是水题了.只是找规律也不太easy的.证明这个规律成立更加不easy. 本题就是求step和mod假设GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choic ...
- hdu 1014.Uniform Generator 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...
- HDU 1014 Uniform Generator 欧几里得
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...
- hdu 1014 Uniform Generator 数论
摘取于http://blog.csdn.net/kenden23/article/details/37519883: 找到规律之后本题就是水题了,不过找规律也不太容易的,证明这个规律成立更加不容易. ...
- HDU 1014 Uniform Generator(最大公约数,周期循环)
#include<iostream> #include <cstdio> #include <cstring> using namespace std; int m ...
- HDOJ 1014 Uniform Generator(公约数问题)
Problem Description Computer simulations often require random numbers. One way to generate pseudo-ra ...
随机推荐
- 免费SSL&付费SSL证书,该如何选择?
近年来Google.Apple.百度等公司不断推动 HTTPS 的普及,SSL 证书作为 HTTPS 安全协议的必备配置,自然也成为了网站.App 开发者最重要部署项目之一. 又拍云于 2016 年联 ...
- 浅谈传统语音通信和APP语音通信音频软件开发之不同点
本人在传统的语音通信公司做过手机和IP电话上的语音软件开发,也在移动互联网公司做过APP上的语音软件开发.现在带实时语音通信功能的APP有好多,主流的有微信语音.QQ电话.钉钉等,当然也包括我开发过的 ...
- BZOJ 4816 数字表格
首先是惯例的吐槽.SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇.学长说考SDOI可以考出联赛分数,%%%. 下面放解题报告.并不喜 ...
- 阅读MDN文档之基本盒模型(三)
Box properties Margin collapsing Adjacent siblings(相邻兄弟) Parent and first/last child Empty blocks Ac ...
- Ubuntu16.04 添加 Docker用户组
Ubuntu16.04 添加 Docker用户组 将用户添加到docker用户组就不用每次都 sudo了. ### 首先创建用户组 sudo groupadd docker 将用户加如组 sudo g ...
- 使用Python批量下载ftp服务器中的内容
使用ftplib,轻松实现从ftp服务器上下载所需要的文件,包括目录结构等,支持了一下断点续传 from ftplib import FTP import sys import os import r ...
- openldap 搭建
环境构建 1)软件安装: yum -y install openldap-servers openldap-clients openldap openldap-devel migrationtools ...
- Android OpenGL ES 入门系列(二) --- 环境搭建
转载请注明出处 本文出自Hansion的博客 本章介绍如何使用GLSurfaceView和GLSurfaceView.Renderer完成在Activity中的最简单实现. 1.在AndroidMan ...
- 一种laravel特有的serviceProvider的加载方式
这里的laravel版本5.5. 我是使用到dingo这个包的时候,觉得很奇怪,我们一般的包使用的时候都需要加载一个serviceProvider,提供服务,dingo/api这里也有ServiceP ...
- asp.net mvc 客户端验证
插件 jQuery unobtrusive Validation @Html.TextBoxFor(x=>x.UserName) [StringLength(7,MinimumLength=2, ...