线段树区间更新操作及Lazy思想(详解)
此题题意很好懂:
给你N个数,Q个操作,操作有两种,‘Q a b ’是询问a~b这段数的和,‘C a b c’是把a~b这段数都加上c。
需要用到线段树的,update:成段增减,query:区间求和
介绍Lazy思想:lazy-tag思想,记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。
在此通俗的解释我理解的Lazy意思,比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,它的节点标记为rt,这时tree[rt].l== a && tree[rt].r == b 这时我们可以一步更新此时rt节点的sum[rt]的值,sum[rt] += c* (tree[rt].r - tree[rt].l + 1),注意关键的时刻来了,如果此时按照常规的线段树的update操作,这时候还应该更新rt子节点的sum[]值,而Lazy思想恰恰是暂时不更新rt子节点的sum[]值,到此就return,直到下次需要用到rt子节点的值的时候才去更新,这样避免许多可能无用的操作,从而节省时间。
下面通过具体的代码来说明之。
在此先介绍下代码中的函数说明:
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
宏定义左儿子lson和右儿子rson,貌似用宏的速度要慢。
PushUp(rt):通过当前节点rt把值递归向上更新到根节点
PushDown(rt):通过当前节点rt递归向下去更新rt子节点的值
rt表示当前子树的根(root),也就是当前所在的结点
__int64 sum[N<<],add[N<<];
struct Node
{
int l,r;
int mid()
{
return (l+r)>>;
}
} tree[N<<];
这里定义数据结构sum用来存储每个节点的子节点数值的总和,add用来记录该节点的每个数值应该加多少
tree[].l tree[].r分别表示某个节点的左右区间,这里的区间是闭区间
下面直接来介绍update函数,Lazy操作主要就是用在这里
void update(int c,int l,int r,int rt)//表示对区间[l,r]内的每个数均加c,rt是根节点
{
if(tree[rt].l == l && r == tree[rt].r)
{
add[rt] += c;
sum[rt] += (__int64)c * (r-l+);
return;
}
if(tree[rt].l == tree[rt].r) return;
PushDown(rt,tree[rt].r - tree[rt].l + );
int m = tree[rt].mid();
if(r <= m) update(c,l,r,rt<<);
else if(l > m) update(c,l,r,rt<<|);
else
{
update(c,l,m,rt<<);
update(c,m+,r,rt<<|);
}
PushUp(rt);
}
if(tree[rt].l == l && r == tree[rt].r) 这里就是用到Lazy思想的关键时刻
正如上面说提到的,这里首先更新该节点的sum[rt]值,然后更新该节点具体每个数值应该加多少即add[rt]的值,注意此时整个函数就运行完了,直接return,而不是还继续向子节点继续更新,这里就是Lazy思想,暂时不更新子节点的值。
那么什么时候需要更新子节点的值呢?答案是在某部分update操作的时候需要用到那部分没有更新的节点的值的时候,这里可能有点绕口。这时就掉用PushDown()函数更新子节点的数值。
void PushDown(int rt,int m)
{
if(add[rt])
{
add[rt<<] += add[rt];
add[rt<<|] += add[rt];
sum[rt<<] += add[rt] * (m - (m>>));
sum[rt<<|] += add[rt] * (m>>);
add[rt] = ;//更新后需要还原
}
}
PushDown就是从当前根节点rt向下更新每个子节点的值,这段代码读者可以自己好好理解,这也是Lazy的关键。
下面再解释query函数,也就是用这个函数来求区间和
__int64 query(int l,int r,int rt)
{
if(l == tree[rt].l && r == tree[rt].r)
{
return sum[rt];
}
PushDown(rt,tree[rt].r - tree[rt].l + );
int m = tree[rt].mid();
__int64 res = ;
if(r <= m) res += query(l,r,rt<<);
else if(l > m) res += query(l,r,rt<<|);
else
{
res += query(l,m,rt<<);
res += query(m+,r,rt<<|);
}
return res;
}
第一个if还是区间的判断和前面update的一样,到这里就可以知道答案了,所以就直接return。
接下来的查询就需要用到rt子节点的值了,由于我们用了Lazy操作,这段的数值还没有更新,因此我们需要调用PushDown函数去更新之,满足if(add[rt])就说明还没有更新。
到这里整个Lazy思想就算介绍结束了,可能我的语言组织不是很好,如果有不理解的地方可以给我留言,我再解释大家的疑惑。
PS:今天总算是对线段树入门了。
附上此题的代码:
#include <iostream>
#include <cstdio>
using namespace std;
const int N = ;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 __int64 sum[N<<],add[N<<];
struct Node
{
int l,r;
int mid()
{
return (l+r)>>;
}
} tree[N<<]; void PushUp(int rt)
{
sum[rt] = sum[rt<<] + sum[rt<<|];
} void PushDown(int rt,int m)
{
if(add[rt])
{
add[rt<<] += add[rt];
add[rt<<|] += add[rt];
sum[rt<<] += add[rt] * (m - (m>>));
sum[rt<<|] += add[rt] * (m>>);
add[rt] = ;
}
} void build(int l,int r,int rt)
{
tree[rt].l = l;
tree[rt].r = r;
add[rt] = ;
if(l == r)
{
scanf("%I64d",&sum[rt]);
return ;
}
int m = tree[rt].mid();
build(lson);
build(rson);
PushUp(rt);
} void update(int c,int l,int r,int rt)
{
if(tree[rt].l == l && r == tree[rt].r)
{
add[rt] += c;
sum[rt] += (__int64)c * (r-l+);
return;
}
if(tree[rt].l == tree[rt].r) return;
PushDown(rt,tree[rt].r - tree[rt].l + );
int m = tree[rt].mid();
if(r <= m) update(c,l,r,rt<<);
else if(l > m) update(c,l,r,rt<<|);
else
{
update(c,l,m,rt<<);
update(c,m+,r,rt<<|);
}
PushUp(rt);
} __int64 query(int l,int r,int rt)
{
if(l == tree[rt].l && r == tree[rt].r)
{
return sum[rt];
}
PushDown(rt,tree[rt].r - tree[rt].l + );
int m = tree[rt].mid();
__int64 res = ;
if(r <= m) res += query(l,r,rt<<);
else if(l > m) res += query(l,r,rt<<|);
else
{
res += query(l,m,rt<<);
res += query(m+,r,rt<<|);
}
return res;
} int main()
{
int n,m;
while(~scanf("%d %d",&n,&m))
{
build(,n,);
while(m--)
{
char ch[];
scanf("%s",ch);
int a,b,c;
if(ch[] == 'Q')
{
scanf("%d %d", &a,&b);
printf("%I64d\n",query(a,b,));
} else
{
scanf("%d %d %d",&a,&b,&c);
update(c,a,b,);
}
}
}
return ;
}
线段树区间更新操作及Lazy思想(详解)的更多相关文章
- 树链剖分(线段树区间更新求和(lazy操作)hdu3966)
题意:给出一颗树形图,有三种操作,I:在u到v的路径上的每个点的权值+d,D:在u到v的路径上的每个点的权值都-d,Q询问u点的权值 #pragma comment(linker, "/ST ...
- A Simple Problem with Integers(线段树区间更新复习,lazy数组的应用)-------------------蓝桥备战系列
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- codevs 1690 开关灯 线段树区间更新 区间查询Lazy
题目描述 Description YYX家门前的街上有N(2<=N<=100000)盏路灯,在晚上六点之前,这些路灯全是关着的,六点之后,会有M(2<=m<=100000)个人 ...
- hihoCoder 1080 : 更为复杂的买卖房屋姿势 线段树区间更新
#1080 : 更为复杂的买卖房屋姿势 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho都是游戏迷,“模拟都市”是他们非常喜欢的一个游戏,在这个游戏里面他们 ...
- HDU5039--Hilarity DFS序+线段树区间更新 14年北京网络赛
题意:n个点的树,每个条边权值为0或者1, q次操作 Q 路径边权抑或和为1的点对数, (u, v)(v, u)算2个. M i修改第i条边的权值 如果是0则变成1, 否则变成0 作法: 我们可以求出 ...
- hihoCoder #1078 : 线段树的区间修改(线段树区间更新板子题)
#1078 : 线段树的区间修改 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 对于小Ho表现出的对线段树的理解,小Hi表示挺满意的,但是满意就够了么?于是小Hi将问题 ...
- hdu 3966(树链剖分+线段树区间更新)
传送门:Problem 3966 https://www.cnblogs.com/violet-acmer/p/9711441.html 学习资料: [1]线段树区间更新:https://blog.c ...
- POJ 3468:A Simple Problem with Integers(线段树区间更新模板)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 141093 ...
随机推荐
- mybatis基础学习1---(配置文件和sql语句)
1:配置文件(主要配置文件) 2:配置文件(引入) 3:sql语句解析: <mapper namespace="/"> <!-- 1 -->根据id查对象 ...
- Java 中的数组
1.声明数组String [] arr;int arr1[];String[] array=new String[5];int score[]=new int[3]; 2.初始化数组://静态初始化i ...
- 嵌入式ARM开发环境搭建
1. 安装,配置,启动FTP服务 安装FTP: sudo apt-get install vsftpd 修改vsftpd的配置文件/etc/vsftpd.conf,将下面两行的'#'去掉#local_ ...
- JavaScript实现
JavaScript实现 Javascript实现虽然JavaScript和ECMAScript通常都被人们用来表达相同的含义,但JavaScript的含义却比ECMA-262中规定的要多得多.没错, ...
- 英文单词断行问题:CSS中word-break、word-wrap以及hyphens的兼容性和区别
CSS中一提到单词断行,最先映入脑海的肯定是word-break和word-wrap这两条属性.但对于这两条属性到底有什么区别,兼容性如何,我一直都概念模糊.今天抽空把它们以及CSS3中新加入的断行属 ...
- 一个关于Linux升级Python后yum的小问题
前几天在自己的阿里云服务器安装好Python3.5.2之后,顺便删除了原有的/usr/bin/python(因为我知道系统自带的是Python2,而且也会有/usr/bin/python2这个文件,所 ...
- OOP的完美点缀—AOP之SpringAOP实现原理
OOP的完美点缀-AOP之SpringAOP实现原理 前言 OOP与AOP OOP(Object Oriented Programming,面向对象编程),通过封装.继承将程序抽象为各个层次的对象,进 ...
- 【Egret】WebSocket 的使用说明
在Egret里可以使用WebSocket ,也可以使用socket.io 首先先深入了解一下 WebSocket 在Egret里的机制,看这篇文章: 主要讲解Egret里使用WebSocket和pro ...
- 老李推荐:第14章8节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-获取控件列表并建立控件树 5
看这段代码之前还是请回到“图13-6-1 NotesList控件列表”中重温一下一个控件的每个属性名和值是怎么组织起来的: android.widget.FrameLayout@41901ab0 dr ...
- 老李推荐:第8章2节《MonkeyRunner源码剖析》MonkeyRunner启动运行过程-解析处理命令行参数 2
我们这一节会先去分析下monkeyrunner是如何对参数进行处理的,我们跳转到MonkeyRunnerOptions这个类里面的processOptions这个方法: 93 public sta ...