Problem Description
Unlike single maze, double maze requires a common sequence of commands to solve both mazes. See the figure below for a quick understanding.

A maze is made up of 6*6 cells. A cell can be either a hole or a square. Moreover, a cell may be surrounded by barriers. There is ONLY one start cell (with a ball) and ONLY one end cell (with a star) in a single maze.These two cells are both squares. It is possible that the start cell and the end cell are the same one. The goal of a single maze is to move the ball from the start cell to the end cell. There are four commands in total,'L', 'D', 'R' and 'U' corresponding to moving the ball left, down, right and up one cell, respectively. The barriers may make the commands take no effect, i.e., the ball does NOT move if there is a barrier on the way.
When the ball gets to a hole or outside of the maze, it fails. A double maze is made up of two single mazes. The commands control two balls simultaneously, and the movements of two balls are according to the rules described above independently. Both balls will continue to move simultaneously if at least one of the balls has not got to the end cell.
So, a ball may move out of the end cell since the other ball has not been to the target. A double maze passes when both balls get to their end cells, or fails if either of the two mazes fails. The goal of double maze is to get the shortest sequence of commands to pass. If there are multiple solutions, get the lexical minimum one.
To simplify the input, a cell is encoded to an integer as follows. The lowest 4 bits signal the existence of the barriers around a cell. The fifth bit indicates whether a cell is a hole or not. The sixth and seventh bits are set for the start cell and end cell. Details are listed in the following table with bits counted from lowest bit. For a barrier, both of the two adjacent cells will have the corresponding barrier bit set. Note that the first two mazes in the sample input is the encoding of two mazes in the figure above, make sure you understand the encoding right.

 
Input
The first line of input gives the total number of mazes, T (1 < T ≤ 20). Then follow T mazes. Each maze is a 6*6 matrix, representing the encoding of the original maze. There is a blank line between mazes.
 
Output
For every two consecutive mazes, you should treat them as a double maze and output the answer. So there are actually T - 1 answers. For each double maze, output the shortest sequence of commands to pass. If there are multiple solutions, output the lexicographically minimum one. If there is no way to pass, output -1 instead.
 
Sample Input
3
16 0 18 16 18 24
20 19 24 16 28 1
18 28 17 0 22 17
25 20 17 18 88 20
2 16 48 28 17 16
24 16 16 20 23 1

16 0 18 16 18 24
20 19 24 20 29 1
18 28 17 16 22 17
8 20 1 18 24 20
19 80 48 24 16 0
24 16 16 16 22 19

18 16 18 16 18 80
24 18 24 16 24 18
18 24 0 0 18 24
24 18 0 0 24 18
18 24 18 16 18 24
56 18 24 18 24 18

 
Sample Output
RRLULLLRRDLU
RURDRLLLURDULURRRRRDDU
 
Author
GAO, Yuan
 
Source
 
Recommend
zhengfeng

题意:给出两个迷宫,每个迷宫各有起点和终点,有的格子能走有的不行,格子与格子之间还可能有护栏。同时控制两个迷宫每次朝同一个方向移动,问最快使得两个迷宫同时到达终点的步数,有多个最优解输出字典序最小的一个。

思路:把两个图合成一个图,建边,用bfs,总共也就6的4次方个点。以dlru的顺序查找,找到的保证字典序最小。用一个数组记录其前驱点,找到答案后倒着输出就好。

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std; #define two(x) (1<<x)
#define inf 200000000
int T;
char c[4]={'D','L','R','U'};
int d[2][37][4],st[2],en[2],f[37][37];
bool can[2][37];
int fa1[37][37],fa2[37][37],dir[37][37],ans[2000]; void init(int cur)
{
memset(d[cur],0,sizeof(d[cur]));
memset(can[cur],1,sizeof(can[cur]));
int x;
for (int i=1;i<=6;++i)
for (int j=1;j<=6;++j)
{
int t=(i-1)*6+j;
scanf("%d",&x);
if (x & two(1)) d[cur][t][0]=t;
else if (i<6) d[cur][t][0]=t+6;
if (x & two(0)) d[cur][t][1]=t;
else if (j>1) d[cur][t][1]=t-1;
if (x & two(2)) d[cur][t][2]=t;
else if (j<6) d[cur][t][2]=t+1;
if (x & two(3)) d[cur][t][3]=t;
else if (i>1) d[cur][t][3]=t-6;
if ((x & two(4))==0) can[cur][t]=false;
if (x & two(5)) st[cur]=t;
if (x & two(6)) en[cur]=t;
}
} void bfs()
{
queue<int> q1,q2;
bool p[37][37];
memset(p,1,sizeof(p));
q1.push(st[0]);
q2.push(st[1]);
p[st[0]][st[1]]=false;
while (!q1.empty())
{
int x=q1.front(),y=q2.front();
q1.pop();q2.pop();
for (int i=0;i<=3;++i)
{
int tx=d[0][x][i],ty=d[1][y][i];
if (tx && ty && can[0][tx] && can[1][ty])
if (p[tx][ty])
{
q1.push(tx);
q2.push(ty);
p[tx][ty]=false;
fa1[tx][ty]=x;
fa2[tx][ty]=y;
dir[tx][ty]=i;
}
}
}
} void solve()
{
memset(dir,-1,sizeof(dir));
dir[st[0]][st[1]]=5;
bfs();
int x=en[0],y=en[1];
if (dir[x][y]==-1)
{
printf("-1\n");
return;
}
int tot=0,tx,ty;
while (!(x==st[0] && y==st[1]))
{
ans[++tot]=dir[x][y];
tx=fa1[x][y];
ty=fa2[x][y];
x=tx;y=ty;
}
for (int i=tot;i>0;--i)
printf("%c",c[ans[i]]);
printf("\n");
} int main()
{
scanf("%d",&T);
init(1);
for (int i=2;i<=T;++i)
{
init(1 & i);
solve();
}
return 0;
}

  

hdu3713 Double Maze的更多相关文章

  1. hdu - 2216 Game III && xtu 1187 Double Maze (两个点的普通bfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=2216 zjt和sara在同一个地图里,zjt要去寻找sara,zjt每移动一步sara就要往相反方向移动,如果他 ...

  2. UVA 10531 Maze Statistics 迷宫统计 迷宫插头DP 四联通 概率

    题意: 有一个N*M的图,每个格子有独立概率p变成障碍物.你要从迷宫左上角走到迷宫右下角.求每个格子成为一个有解迷宫中的障碍物的概率.N <= 5,M <= 6 分析: 这真是一道好题,网 ...

  3. HDU 3853:LOOPS(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=3853 LOOPS Problem Description   Akemi Homura is a M ...

  4. HDU 4035:Maze(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description   When w ...

  5. HDU-4035 Maze

    http://acm.hdu.edu.cn/showproblem.php?pid=4035 树上的概率dp.   Maze Time Limit: 2000/1000 MS (Java/Others ...

  6. hdu 4035 Maze(期待更多经典的树DP)

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Submi ...

  7. Maze HDU - 4035(期望dp)

    When wake up, lxhgww find himself in a huge maze. The maze consisted by N rooms and tunnels connecti ...

  8. hdu4035 Maze

    题目链接 hdu4035 Maze 题解 f[u]表示在节点u通关的所需的边数期望 转移方程分叶子节点和非叶子点讨论 发现都可以化成f[x]=af[1]+bf[dad]+c的形式 然后推一下系数 还是 ...

  9. Meandering Through the Maze of MFC Message and Command Routing MFC消息路由机制分析

    Meandering Through the Maze of MFC Message and Command Routing Paul DiLascia Paul DiLascia is a free ...

随机推荐

  1. Python基础之内置函数和递归

    一.内置函数 下面简单介绍几个: 1.abs() 求绝对值 2.all() 如果 iterable 的所有元素都为真(或者如果可迭代为空),则返回 True 3.any() 如果 iterable 的 ...

  2. Certificates does not conform to algorithm constraints

    今天在开发时遇到一个新问题:Certificates does not conform to algorithm constraints,在此记录一下解决方案. 问题详情: [ERROR] Faile ...

  3. 搭建私有Docker Registry

    Docker官方提供了用于搭建私有registry的镜像,并配有详细文档. 官方Registry镜像:https://hub.docker.com/_/registry 官方文档:https://do ...

  4. 【JAVASCRIPT】React学习-组件生命周期

    摘要 整理组件加载过程,详细见官方文档:https://facebook.github.io/react/docs/react-component.html mount 过程 1)constructo ...

  5. 开启属于你的GNOME桌面

    图片剪辑源自美剧<黑客军团>(英语:Mr. Robot) GNOME(GNU Network ObjectEnvironment)是一种GNU网络对象模型环境 ,GNU计划的一部分,目的为 ...

  6. [译] 所有你需要知道的关于完全理解 Node.js 事件循环及其度量

    原文地址:All you need to know to really understand the Node.js Event Loop and its Metrics 原文作者:Daniel Kh ...

  7. NYOJ--45--棋盘覆盖(大数)

    棋盘覆盖 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 在一个2k×2k(1<=k<=100)的棋盘中恰有一方格被覆盖,如图1(k=2时),现用一缺角的 ...

  8. AT NEW 和 AT END OF 的用法

    第一条记录:col1='1000',col2='AAA1',col3=1 第二条记录:col1='1000',col2='AAA2',col3=2 第三条记录:col1='2000',col2='AA ...

  9. 初学Python之 字符串 索引 分片

    字符串是字符的有序集合,可以通过其位置来获得具体的元素. 在python中,字符串中的字符是通过索引来提取的,索引从0开始. python可以取负值,表示从末尾提取,最后一个为-1,倒数第二个为-2, ...

  10. 小米wifi

    场景:把小米wifi插主机上,作为热点发射器:然后使用手机搜索到这个热点,建立wifi连接 驱动:当"把小米wifi插主机上"的时候,主机可能无法识别这个设备,所以需要前往官网下载驱动 下载地址:ht ...