[笔记]机器学习(Machine Learning) - 00.目录/大纲/写在之前
目录会根据我的学习进度而更新,给自己列一个大纲以系统地看待整个学习过程。
学习资料来源
学习的是Coursera上吴恩达(Andrew Ng)老师的机器学习视频(课程传送门,最近在“最强大脑”上看到他了好激动啊,原来他去做百度大脑了呀),笔记根据此系列视频整理。笔记顺序不一定与原教程一样,希望加入些自己的思考。
同时使用了网上找到的黄海广博士的对于吴大大视频教程的笔记(传送门)。因为我一开始看视频没做笔记,现在忘得差不多啦,现在打算写个笔记,重新去看视频再整理太麻烦,网上竟然找到这一神器,视频内容全都用中文写在里面了,棒!(不过还是不太好意思发邮件给他自我介绍。。。先暂时做伸手党吧。。。)
机器学习分类
1.监督学习(Supervised Learning)
给定数据集,数据集的每个样本均有提供“正确答案”,根据这些样本进行预测。例子:
垃圾邮件分类:根据已知的垃圾邮件特征判断新邮件是否垃圾;
判定肿瘤是否恶性:根据已知恶性、良性特征判断病人肿瘤情况。
1)回归问题(Regression)
给定数据集中每个样本的正确答案,运用到机器学习中,推出一个连续的输出。
如线性回归(Linear Regression)。
2)分类问题(Classification)
给定数据集中每个样本的正确答案,运用到机器学习中,推出一组离散的结果。
如逻辑回归(Logistic Regression)。
注意:逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了“回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法。
2.无监督学习(Unsupervised Learning)
只给定数据集,每个样本没有标签、没有提前告知的“正确答案”,要求在数据中自动找出某种结构。例子:
新闻分类:自动将同一主题的新闻分类;
DNA检测:判断每个个体是否有一个特定基因。
辨识人声:从一段音频分出每个人的音轨。
(待更新)
[笔记]机器学习(Machine Learning) - 00.目录/大纲/写在之前的更多相关文章
- [笔记]机器学习(Machine Learning) - 01.线性回归(Linear Regression)
线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数 ...
- [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...
- [笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .
随机推荐
- 爱回收jd图标
http://jd.aihuishou.com/images/icons.png http://misc.360buyimg.com/201007/skin/df/i/bg_hotsale.gif 来 ...
- ng自带的表单验证
几点注意:使用ng的表单验证,需要给form,input,textarea一个name 要求:验证输入框的内容(长度,正则,必填,),当验证不通过的时候,就禁用提交按钮 使用的验证:ng-maxlen ...
- Flash加载ini文件!
这个帖子里有解决方案: http://bbs.9ria.com/thread-405128-1-1.html
- 老李推荐:第14章4节《MonkeyRunner源码剖析》 HierarchyViewer实现原理-装备ViewServer-端口转发 3
formAdbRequest我们在之前已经分析过,做的事情就是组建好ADB协议的命令以待发送给ADB服务器,在我们558行中最终组建好的ADB协议命令将会如下: “host-serial:xxx:fo ...
- MCDownloader(iOS下载器)说明书
示例 前言 很多iOS应用中都需要下载数据,并对这些下载的过程和结果进行管理,因此我才有了写这个MCDownloader的想法.在IOS 文件下载器-MCDownloadManager这篇文章中,我使 ...
- 关于/var/run/docker.sock
译者按: 这篇博客介绍了什么是/var/run/docker.sock,以及如何使用/var/run/docker.sock与Docker守护进程通信,并且提供了两个简单的示例.理解这些,我们就可以运 ...
- ASP.NET CORE部署到Linux
ASP.NET CORE部署到CentOS中 在Linux上安装.NET Core 参考:https://www.microsoft.com/net/core#linuxcentos 配置Nginx ...
- 基于MATLAB的数字基带信号的各种码型的产生
单极性非归零码 单极性非归零码使用电平1来表示二元信息中的“1”,用电平0来表示二元信息中的“0”,电平在整个码元的时间里不变单极性非归零码的优点是实现简单,但由于含有直流分量,对在带限信道中的传输不 ...
- Jax-ws 开发webService ,并使用spring注入service类
由于使用myeclipse自动生成的Delegate,所以在使用service实现层的时候,默认创建的时候都是使用new的方法: 这样就导致每一次请求过来都得new一个新的:如果service有注入其 ...
- iOS原生地图与高德地图的使用
原生地图 1.什么是LBS LBS: 基于位置的服务 Location Based Service 实际应用:大众点评,陌陌,微信,美团等需要用到地图或定位的App 2.定位方式 1.GPS定位 2. ...