[笔记]机器学习(Machine Learning) - 00.目录/大纲/写在之前
目录会根据我的学习进度而更新,给自己列一个大纲以系统地看待整个学习过程。
学习资料来源
学习的是Coursera上吴恩达(Andrew Ng)老师的机器学习视频(课程传送门,最近在“最强大脑”上看到他了好激动啊,原来他去做百度大脑了呀),笔记根据此系列视频整理。笔记顺序不一定与原教程一样,希望加入些自己的思考。
同时使用了网上找到的黄海广博士的对于吴大大视频教程的笔记(传送门)。因为我一开始看视频没做笔记,现在忘得差不多啦,现在打算写个笔记,重新去看视频再整理太麻烦,网上竟然找到这一神器,视频内容全都用中文写在里面了,棒!(不过还是不太好意思发邮件给他自我介绍。。。先暂时做伸手党吧。。。)
机器学习分类
1.监督学习(Supervised Learning)
给定数据集,数据集的每个样本均有提供“正确答案”,根据这些样本进行预测。例子:
垃圾邮件分类:根据已知的垃圾邮件特征判断新邮件是否垃圾;
判定肿瘤是否恶性:根据已知恶性、良性特征判断病人肿瘤情况。
1)回归问题(Regression)
给定数据集中每个样本的正确答案,运用到机器学习中,推出一个连续的输出。
如线性回归(Linear Regression)。
2)分类问题(Classification)
给定数据集中每个样本的正确答案,运用到机器学习中,推出一组离散的结果。
如逻辑回归(Logistic Regression)。
注意:逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了“回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法。
2.无监督学习(Unsupervised Learning)
只给定数据集,每个样本没有标签、没有提前告知的“正确答案”,要求在数据中自动找出某种结构。例子:
新闻分类:自动将同一主题的新闻分类;
DNA检测:判断每个个体是否有一个特定基因。
辨识人声:从一段音频分出每个人的音轨。
(待更新)
[笔记]机器学习(Machine Learning) - 00.目录/大纲/写在之前的更多相关文章
- [笔记]机器学习(Machine Learning) - 01.线性回归(Linear Regression)
线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数 ...
- [笔记]机器学习(Machine Learning) - 03.正则化(Regularization)
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们 ...
- [笔记]机器学习(Machine Learning) - 02.逻辑回归(Logistic Regression)
逻辑回归算法是分类算法,虽然这个算法的名字中出现了"回归",但逻辑回归算法实际上是一种分类算法,我们将它作为分类算法使用.. 分类问题:对于每个样本,判断它属于N个类中的那个类或哪 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...
- 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
[重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .
随机推荐
- Web移动端的常用组件库
normalize http://necolas.github.io/normalize.css/ 最受欢迎的css reset 保留有用的默认值,这个区别于其他的CSS resets 标准化大范围的 ...
- C++实现四叉树
什么是四叉树? 四叉树可以有效解决这个问题. 四叉树每一层都把地图划分四块,根据地图尺寸来决定树的层数,层数越大划分越细. 但需要对某一范围的单位筛选时,只需要定位到与范围相交的树区域,再对其区域内的 ...
- 分解机(Factorization Machines)推荐算法原理
对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了 ...
- insmod: can't insert 'led.ko': invalid module format详细解释
insmod: can't insert 'led.ko': invalid module format 之前在Imx257学习版固件编写的驱动想直接移植imx257核心板的开发板上.以为2个板子的源 ...
- Struts2的类型转换(上)
传统的类型转换.(略) Struts2中提供了内置的基本的类型转换器,可以实现基本类型的自动转换,包括: Integer, Float, Double, Decimal Date and Dateti ...
- 利用<meta http-equiv="refresh" content="0;URL=?id='.$id.'" />一条一条的更新数据
<meta http-equiv="refresh" content="0;URL=?id='.$id.'" /> 解释:页面定时刷新,后面加url ...
- SQLite 数据库
内容来源:高成珍.钟元生<Android编程经典案例解析> SQLite 数据库是Android 中内嵌的轻量级关系型数据库,本质上只是一个文件.SQLite 内部只支持NULL,INTE ...
- Spring Ioc介绍和Bean的实例化
一.IoC:Inverse of Control 控制反转 // 依赖注入 Dependency Injection 控制:某一接口具体实现类的选择权 反转:从调用者中移除控制权,转交第三方 ...
- 跟着刚哥梳理java知识点——深入理解String类(九)
一.String类 想要了解一个类,最好的办法就是看这个类的实现源代码,来看一下String类的源码: public final class String implements java.io.Ser ...
- NestedScrollView嵌套RecycleView 滑动 实现上滑隐藏 下滑显示头部效果
废了好大的劲才弄好的,记下来 方便以后查看 public class MainActivity extends AppCompatActivity { private RecyclerView mRe ...