Python NLP入门教程
本文简要介绍Python自然语言处理(NLP),使用Python的NLTK库。NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库。
什么是NLP?
简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务。
这里讨论一些自然语言处理(NLP)的实际应用例子,如语音识别、语音翻译、理解完整的句子、理解匹配词的同义词,以及生成语法正确完整句子和段落。
这并不是NLP能做的所有事情。
NLP实现
搜索引擎: 比如谷歌,Yahoo等。谷歌搜索引擎知道你是一个技术人员,所以它显示与技术相关的结果;
社交网站推送:比如Facebook News Feed。如果News Feed算法知道你的兴趣是自然语言处理,就会显示相关的广告和帖子。
语音引擎:比如Apple的Siri。
垃圾邮件过滤:如谷歌垃圾邮件过滤器。和普通垃圾邮件过滤不同,它通过了解邮件内容里面的的深层意义,来判断是不是垃圾邮件。
NLP库
下面是一些开源的自然语言处理库(NLP):
- Natural language toolkit (NLTK);
- Apache OpenNLP;
- Stanford NLP suite;
- Gate NLP library
其中自然语言工具包(NLTK)是最受欢迎的自然语言处理库(NLP),它是用Python编写的,而且背后有非常强大的社区支持。
NLTK也很容易上手,实际上,它是最简单的自然语言处理(NLP)库。
在这个NLP教程中,我们将使用Python NLTK库。
安装 NLTK
如果您使用的是Windows/Linux/Mac,您可以使用pip安装NLTK:
pip install nltk
打开python终端导入NLTK检查NLTK是否正确安装:
import nltk
如果一切顺利,这意味着您已经成功地安装了NLTK库。首次安装了NLTK,需要通过运行以下代码来安装NLTK扩展包:
import nltk
nltk.download()
这将弹出NLTK 下载窗口来选择需要安装哪些包:
您可以安装所有的包,因为它们的大小都很小,所以没有什么问题。
使用Python Tokenize文本
首先,我们将抓取一个web页面内容,然后分析文本了解页面的内容。
我们将使用urllib模块来抓取web页面:
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
print (html)
从打印结果中可以看到,结果包含许多需要清理的HTML标签。
然后BeautifulSoup模块来清洗这样的文字:
from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
# 这需要安装html5lib模块
text = soup.get_text(strip=True)
print (text)
现在我们从抓取的网页中得到了一个干净的文本。
下一步,将文本转换为tokens,像这样:
from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
print (tokens)
统计词频
text已经处理完毕了,现在使用Python NLTK统计token的频率分布。
可以通过调用NLTK中的FreqDist()
方法实现:
from bs4 import BeautifulSoup
import urllib.request
import nltk
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
freq = nltk.FreqDist(tokens)
for key,val in freq.items():
print (str(key) + ':' + str(val))
如果搜索输出结果,可以发现最常见的token是PHP。
您可以调用plot
函数做出频率分布图:
freq.plot(20, cumulative=False)
# 需要安装matplotlib库
这上面这些单词。比如of
,a
,an
等等,这些词都属于停用词。
一般来说,停用词应该删除,防止它们影响分析结果。
处理停用词
NLTK自带了许多种语言的停用词列表,如果你获取英文停用词:
from nltk.corpus import stopwords
stopwords.words('english')
现在,修改下代码,在绘图之前清除一些无效的token:
clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
if token not in sr:
clean_tokens.append(token)
最终的代码应该是这样的:
from bs4 import BeautifulSoup
import urllib.request
import nltk
from nltk.corpus import stopwords
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
if not token in sr:
clean_tokens.append(token)
freq = nltk.FreqDist(clean_tokens)
for key,val in freq.items():
print (str(key) + ':' + str(val))
现在再做一次词频统计图,效果会比之前好些,因为剔除了停用词:
freq.plot(20,cumulative=False)
使用NLTK Tokenize文本
在之前我们用split
方法将文本分割成tokens,现在我们使用NLTK来Tokenize文本。
文本没有Tokenize之前是无法处理的,所以对文本进行Tokenize非常重要的。token化过程意味着将大的部件分割为小部件。
你可以将段落tokenize成句子,将句子tokenize成单个词,NLTK分别提供了句子tokenizer和单词tokenizer。
假如有这样这段文本:
Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude.
使用句子tokenizer将文本tokenize成句子:
from nltk.tokenize import sent_tokenize
mytext = "Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))
输出如下:
['Hello Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']
这是你可能会想,这也太简单了,不需要使用NLTK的tokenizer都可以,直接使用正则表达式来拆分句子就行,因为每个句子都有标点和空格。
那么再来看下面的文本:
Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude.
这样如果使用标点符号拆分,Hello Mr
将会被认为是一个句子,如果使用NLTK:
from nltk.tokenize import sent_tokenize
mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))
输出如下:
['Hello Mr. Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']
这才是正确的拆分。
接下来试试单词tokenizer:
from nltk.tokenize import word_tokenize
mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(word_tokenize(mytext))
输出如下:
['Hello', 'Mr.', 'Adam', ',', 'how', 'are', 'you', '?', 'I', 'hope', 'everything', 'is', 'going', 'well', '.', 'Today', 'is', 'a', 'good', 'day', ',', 'see', 'you', 'dude', '.']
Mr.
这个词也没有被分开。NLTK使用的是punkt模块的PunktSentenceTokenizer,它是NLTK.tokenize的一部分。而且这个tokenizer经过训练,可以适用于多种语言。
非英文Tokenize
Tokenize时可以指定语言:
from nltk.tokenize import sent_tokenize
mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour."
print(sent_tokenize(mytext,"french"))
输出结果如下:
['Bonjour M. Adam, comment allez-vous?', "J'espère que tout va bien.", "Aujourd'hui est un bon jour."]
同义词处理
使用nltk.download()
安装界面,其中一个包是WordNet。
WordNet是一个为自然语言处理而建立的数据库。它包括一些同义词组和一些简短的定义。
您可以这样获取某个给定单词的定义和示例:
from nltk.corpus import wordnet
syn = wordnet.synsets("pain")
print(syn[0].definition())
print(syn[0].examples())
输出结果是:
a symptom of some physical hurt or disorder
['the patient developed severe pain and distension']
WordNet包含了很多定义:
from nltk.corpus import wordnet
syn = wordnet.synsets("NLP")
print(syn[0].definition())
syn = wordnet.synsets("Python")
print(syn[0].definition())
结果如下:
the branch of information science that deals with natural language information
large Old World boas
可以像这样使用WordNet来获取同义词:
from nltk.corpus import wordnet
synonyms = []
for syn in wordnet.synsets('Computer'):
for lemma in syn.lemmas():
synonyms.append(lemma.name())
print(synonyms)
输出:
['computer', 'computing_machine', 'computing_device', 'data_processor', 'electronic_computer', 'information_processing_system', 'calculator', 'reckoner', 'figurer', 'estimator', 'computer']
反义词处理
也可以用同样的方法得到反义词:
from nltk.corpus import wordnet
antonyms = []
for syn in wordnet.synsets("small"):
for l in syn.lemmas():
if l.antonyms():
antonyms.append(l.antonyms()[0].name())
print(antonyms)
输出:
['large', 'big', 'big']
词干提取
语言形态学和信息检索里,词干提取是去除词缀得到词根的过程,例如working的词干为work。
搜索引擎在索引页面时就会使用这种技术,所以很多人为相同的单词写出不同的版本。
有很多种算法可以避免这种情况,最常见的是波特词干算法。NLTK有一个名为PorterStemmer的类,就是这个算法的实现:
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('working'))
print(stemmer.stem('worked'))
输出结果是:
work
work
还有其他的一些词干提取算法,比如 Lancaster词干算法。
非英文词干提取
除了英文之外,SnowballStemmer还支持13种语言。
支持的语言:
from nltk.stem import SnowballStemmer
print(SnowballStemmer.languages)
'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish'
你可以使用SnowballStemmer
类的stem
函数来提取像这样的非英文单词:
from nltk.stem import SnowballStemmer
french_stemmer = SnowballStemmer('french')
print(french_stemmer.stem("French word"))
单词变体还原
单词变体还原类似于词干,但不同的是,变体还原的结果是一个真实的单词。不同于词干,当你试图提取某些词时,它会产生类似的词:
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('increases'))
结果:
increas
现在,如果用NLTK的WordNet来对同一个单词进行变体还原,才是正确的结果:
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('increases'))
结果:
increase
结果可能会是一个同义词或同一个意思的不同单词。
有时候将一个单词做变体还原时,总是得到相同的词。
这是因为语言的默认部分是名词。要得到动词,可以这样指定:
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))
结果:
play
实际上,这也是一种很好的文本压缩方式,最终得到文本只有原先的50%到60%。
结果还可以是动词(v)、名词(n)、形容词(a)或副词(r):
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))
print(lemmatizer.lemmatize('playing', pos="n"))
print(lemmatizer.lemmatize('playing', pos="a"))
print(lemmatizer.lemmatize('playing', pos="r"))
输出:
play
playing
playing
playing
词干和变体的区别
通过下面例子来观察:
from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
print(stemmer.stem('stones'))
print(stemmer.stem('speaking'))
print(stemmer.stem('bedroom'))
print(stemmer.stem('jokes'))
print(stemmer.stem('lisa'))
print(stemmer.stem('purple'))
print('----------------------')
print(lemmatizer.lemmatize('stones'))
print(lemmatizer.lemmatize('speaking'))
print(lemmatizer.lemmatize('bedroom'))
print(lemmatizer.lemmatize('jokes'))
print(lemmatizer.lemmatize('lisa'))
print(lemmatizer.lemmatize('purple'))
输出:
stone
speak
bedroom
joke
lisa
purpl
---------------------
stone
speaking
bedroom
joke
lisa
purple
词干提取不会考虑语境,这也是为什么词干提取比变体还原快且准确度低的原因。
个人认为,变体还原比词干提取更好。单词变体还原返回一个真实的单词,即使它不是同一个单词,也是同义词,但至少它是一个真实存在的单词。
如果你只关心速度,不在意准确度,这时你可以选用词干提取。
在此NLP教程中讨论的所有步骤都只是文本预处理。在以后的文章中,将会使用Python NLTK来实现文本分析。
我已经尽量使文章通俗易懂。希望能对你有所帮助。
本文首发于http://www.spiderpy.cn/blog/detail/30,转载请注明!
Python NLP入门教程的更多相关文章
- Python基础入门教程
Python基础入门教程 Python基础教程 Python 简介 Python环境搭建 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 Python 循 ...
- Python爬虫入门教程 48-100 使用mitmdump抓取手机惠农APP-手机APP爬虫部分
1. 爬取前的分析 mitmdump是mitmproxy的命令行接口,比Fiddler.Charles等工具方便的地方是它可以对接Python脚本. 有了它我们可以不用手动截获和分析HTTP请求和响应 ...
- Python爬虫入门教程 43-100 百思不得姐APP数据-手机APP爬虫部分
1. Python爬虫入门教程 爬取背景 2019年1月10日深夜,打开了百思不得姐APP,想了一下是否可以爬呢?不自觉的安装到了夜神模拟器里面.这个APP还是比较有名和有意思的. 下面是百思不得姐的 ...
- 2019-03-22 Python Scrapy 入门教程 笔记
Python Scrapy 入门教程 入门教程笔记: # 创建mySpider scrapy startproject mySpider # 创建itcast.py cd C:\Users\theDa ...
- Python学习入门教程,字符串函数扩充详解
因有用户反映,在基础文章对字符串函数的讲解太过少,故写一篇文章详细讲解一下常用字符串函数.本文章是对:程序员带你十天快速入门Python,玩转电脑软件开发(三)中字符串函数的详解与扩充. 如果您想学习 ...
- Python爬虫入门教程 20-100 慕课网免费课程抓取
写在前面 美好的一天又开始了,今天咱继续爬取IT在线教育类网站,慕课网,这个平台的数据量并不是很多,所以爬取起来还是比较简单的 准备爬取 打开我们要爬取的页面,寻找分页点和查看是否是异步加载的数据. ...
- 2020年秋季最新Python详细入门教程!全网最新最全
1. import # -*- coding: utf-8 -*- ## 引入新的包 import turtle import pickle # 文件操作 import tensorflow as t ...
- Python爬虫入门教程 37-100 云沃客项目外包网数据爬虫 scrapy
爬前叨叨 2019年开始了,今年计划写一整年的博客呢~,第一篇博客写一下 一个外包网站的爬虫,万一你从这个外包网站弄点外快呢,呵呵哒 数据分析 官方网址为 https://www.clouderwor ...
- Python爬虫入门教程 36-100 酷安网全站应用爬虫 scrapy
爬前叨叨 2018年就要结束了,还有4天,就要开始写2019年的教程了,没啥感动的,一年就这么过去了,今天要爬取一个网站叫做酷安,是一个应用商店,大家可以尝试从手机APP爬取,不过爬取APP的博客,我 ...
随机推荐
- ThreadLocal类分析
首先试想一个场景: 多个线程都要访问数据库,先要获得一个Connection,然后执行一些操作.为了线程安全,如果用synchronized锁定一个Connection对象,那么任何时候,都只有一个线 ...
- 【ASP.NET MVC】View与Controller之间传递数据
1 概述 本篇文章主要从操作上简要分析Controller<=>View之间相互传值,关于页面之间传值,如果感兴趣,可参考我另外一篇文章ASP.NET 页面之间传值的几种方式 . Co ...
- 一、Nginx安装手册
1 nginx安装环境 nginx是C语言开发,建议在linux上运行,本教程使用Centos6.5作为安装环境. gcc 安装nginx需要先将官网下载的源码进行编译,编译依赖gcc环境,如果没有g ...
- px,em,rem,vw单位在网页和移动端的应用
px: 是网页设计中最常用的单位,然而1px到底是多大长,恐怕没有人能回答上来 它用来表示屏幕设备物理上能显示的最小的一个点,这个点不是固定宽度的,不同设备上点的长度.比例有可能会不同. 假设:你现在 ...
- Java基础学习 —— bat处理文件
bat处理文件:就是一次性可以执行多个命令的文件 为什么要学bat处理文件? 快速运行一个软件我一般都会打包成jar包的形式来执行jar双击对图形界面管用 但是对控制台的程序是不起作用的.对于控制台的 ...
- [置顶]
Chat Room:基于JAVA Socket的聊天室设计
d0304 更新功能实现 d0312 更新部分图片&UI设计部分 d0318 更新功能实现 d1222 实现添加好友功能.实现注册功能.修改大量BUG github:https://githu ...
- test文件伪装
该文件属于伪装图片类型.图片另存后把后缀改为rar将看到txt文件. 利用了 cmd cp /b 命令 命令格式:copy /b 文件1+文件2+......文件N 合并后的文件名<br&g ...
- 想做iPhoneX抢购活动?压测大师先教你优化网站后台
北京时间9月13日凌晨1点,iPhone 10周年,在Apple Park乔布斯剧院,苹果发布了三款新iPhone.全面屏iPhone X来袭,这款被定义为未来的智能手机黑科技满满:全面屏,无线充电. ...
- idea 给maven项目添加依赖(二)
这里接着上一篇来 我们观察目录发现有两个pom.xml(project object module) 项目是里面的,所以外面的先不管它. 点击里面的pom.xml 1.在<url>节点下面 ...
- Unity2017.x 版本的下载安装
Unity2017 版本从2017年7月开始正式发布Unity2017.1版本,为了初学者更加清晰明了的掌握全过程,笔者还是以完整的共19个步骤来给大家演示下载与配置安装的全过程,方便广大读者的无障碍 ...