1. 正则表达式基础

1.1. 简单介绍

正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了。

下图展示了使用正则表达式进行匹配的流程:

正则表达式的大致匹配过程是:依次拿出表达式和文本中的字符比较,如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。如果表达式中有量词或边界,这个过程会稍微有一些不同,但也是很好理解的,看下图中的示例以及自己多使用几次就能明白。

下图列出了Python支持的正则表达式元字符和语法:  

1.2. 数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab*?",将找到"a"。

1.3. 反斜杠的困扰

与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

1.4. 匹配模式

正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,这部分内容将在Pattern类的工厂方法re.compile(pattern[, flags])中一起介绍。

2. re模块

2.1. 开始使用re

Python通过re模块提供对正则表达式的支持。使用re的一般步骤是先将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。

 # encoding: UTF-
import re
 
# 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello')
 
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!')
 
if match:
    # 使用Match获得分组信息
    print match.group()
 
### 输出 ###
# hello

re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。
可选值有:

  • re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  • M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
  • S(DOTALL): 点任意匹配模式,改变'.'的行为
  • L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  • U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  • X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:
 a = re.compile(r"""\d +  # the integral part
                   \.    # the decimal point
                   \d *  # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:

  m = re.match(r'hello', 'hello world!') print m.group() 

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。

2.2. Match

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

  1. string: 匹配时使用的文本。
  2. re: 匹配时使用的Pattern对象。
  3. pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  4. endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  5. lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
  6. lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

  1. group([group1, …]):
    获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
  2. groups([default]):
    以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
  3. groupdict([default]):
    返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
  4. start([group]):
    返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
  5. end([group]):
    返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
  6. span([group]):
    返回(start(group), end(group))。
  7. expand(template):
    将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
     import re
    m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello world!')
     
    print "m.string:", m.string
    print "m.re:", m.re
    print "m.pos:", m.pos
    print "m.endpos:", m.endpos
    print "m.lastindex:", m.lastindex
    print "m.lastgroup:", m.lastgroup
     
    print "m.group(1,2):", m.group(1, 2)
    print "m.groups():", m.groups()
    print "m.groupdict():", m.groupdict()
    print "m.start(2):", m.start(2)
    print "m.end(2):", m.end(2)
    print "m.span(2):", m.span(2)
    print r"m.expand(r'\2 \1\3'):", m.expand(r'\2 \1\3')
     
    ### output ###
    # m.string: hello world!
    # m.re: <_sre.SRE_Pattern object at 0x016E1A38>
    # m.pos: 0
    # m.endpos: 12
    # m.lastindex: 3
    # m.lastgroup: sign
    # m.group(1,2): ('hello', 'world')
    # m.groups(): ('hello', 'world', '!')
    # m.groupdict(): {'sign': '!'}
    # m.start(2): 6
    # m.end(2): 11
    # m.span(2): (6, 11)
    # m.expand(r'\2 \1\3'): world hello!
2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

  1. pattern: 编译时用的表达式字符串。
  2. flags: 编译时用的匹配模式。数字形式。
  3. groups: 表达式中分组的数量。
  4. groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
 import re
p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)
 
print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex
 
### output ###
# p.pattern: (\w+) (\w+)(?P<sign>.*)
# p.flags: 16
# p.groups: 3
# p.groupindex: {'sign': 3}

实例方法[ | re模块方法]:

    1. match(string[, pos[, endpos]]) | re.match(pattern, string[, flags]):
      这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。
      pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
      注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。
      示例参见2.1小节。
    2. search(string[, pos[, endpos]]) | re.search(pattern, string[, flags]):
      这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。
      pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。     
       # encoding: UTF-8
      import re
       
      # 将正则表达式编译成Pattern对象
      pattern = re.compile(r'world')
       
      # 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
      # 这个例子中使用match()无法成功匹配
      match = pattern.search('hello world!')
       
      if match:
          # 使用Match获得分组信息
          print match.group()
       
      ### 输出 ###
      # world
    3. split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
      按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。
       import re
       
      p = re.compile(r'\d+')
      print p.split('one1two2three3four4')
       
      ### output ###
      # ['one', 'two', 'three', 'four', '']
    4. findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
      搜索string,以列表形式返回全部能匹配的子串。
       import re
       
      p = re.compile(r'\d+')
      print p.findall('one1two2three3four4')
       
      ### output ###
      # ['1', '2', '3', '4']
    5. finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
      搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
       import re
       
      p = re.compile(r'\d+')
      for m in p.finditer('one1two2three3four4'):
          print m.group(),
       
      ### output ###
      # 1 2 3 4
    6. sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
      使用repl替换string中每一个匹配的子串后返回替换后的字符串。
      当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
      当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
      count用于指定最多替换次数,不指定时全部替换。
      ?

       import re
       
      p = re.compile(r'(\w+) (\w+)')
      s = 'i say, hello world!'
       
      print p.sub(r'\2 \1', s)
       
      def func(m):
          return m.group(1).title() + ' ' + m.group(2).title()
       
      print p.sub(func, s)
       
      ### output ###
      # say i, world hello!
      # I Say, Hello World!
      subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
      返回 (sub(repl, string[, count]), 替换次数)。     
    7.  import re
       
      p = re.compile(r'(\w+) (\w+)')
      s = 'i say, hello world!'
       
      print p.subn(r'\2 \1', s)
       
      def func(m):
          return m.group(1).title() + ' ' + m.group(2).title()
       
      print p.subn(func, s)
       
      ### output ###
      # ('say i, world hello!', 2)
      # ('I Say, Hello World!', 2)

Python re 正则表达式简介的更多相关文章

  1. Python中正则表达式简介

    目录 一.什么是正则表达式 二.正则表达式的基础知识 1. 原子 1)普通字符作为原子 2)非打印字符作为原子 3) 通用字符作为原子 4) 原子表 2. 元字符 1)任意匹配元字符 2)边界限制元字 ...

  2. 正则表达式:Python 模块 re 简介

    为了使文章更具可读性,本文将正则表达式冗长的 语法介绍 放在了文章的末尾. 一.正则表达式简介 正则表达式(RegExp)是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(元字符 ...

  3. 【转】正则表达式简介及在C++11中的简单使用教程

    正则表达式Regex(regular expression)是一种强大的描述字符序列的工具.在许多语言中都存在着正则表达式,C++11中也将正则表达式纳入了新标准的一部分,不仅如此,它还支持了6种不同 ...

  4. [python] 常用正则表达式爬取网页信息及分析HTML标签总结【转】

    [python] 常用正则表达式爬取网页信息及分析HTML标签总结 转http://blog.csdn.net/Eastmount/article/details/51082253 标签: pytho ...

  5. Python 进阶 - 正则表达式

    1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十 ...

  6. python study - 正则表达式

    第 7 章 正则表达式 7.1. 概览 7.2. 个案研究:街道地址 7.3. 个案研究:罗马字母 7.3.1. 校验千位数 7.3.2. 校验百位数 7.4. 使用 {n,m} 语法 7.4.1. ...

  7. Python生态环境简介[转]

    Python生态环境简介 作者: Mir Nazim 原文: Python Ecosystem - An Introduction 译者: dccrazyboy  原译: Python生态环境简介 当 ...

  8. python使用正则表达式文本替换

    2D客户端编程从某种意义上来讲就是素材组织,所以,图片素材组织经常需要批量处理,python一定是最佳选择,不管是win/linux/mac都有一个简单的运行环境 举两个应用场景: 如果不是在某个文件 ...

  9. python的正则表达式 re

    python的正则表达式 re 本模块提供了和Perl里的正则表达式类似的功能,不关是正则表达式本身还是被搜索的字符串,都可以是Unicode字符,这点不用担心,python会处理地和Ascii字符一 ...

随机推荐

  1. 从数据库读取二进制图片,img标签显示图片

    引自 http://www.w3dev.cn/article/20110214/asp-net-csharp-image-base64-change.aspx      <img src=&qu ...

  2. js中页面刷新和页面跳转的方法总结 [ 转自欢醉同学 ]

    .js中cookie的基本用法简介 2009-12-15 js中页面刷新和页面跳转的方法总结 文章分类:Web前端 关键字: javascript js中页面刷新和页面跳转的方法总结 1.histor ...

  3. Apache Flume日志收集系统简介

    Apache Flume是一个分布式.可靠.可用的系统,用于从大量不同的源有效地收集.聚合.移动大量日志数据进行集中式数据存储. Flume简介 Flume的核心是Agent,Agent中包含Sour ...

  4. Python的.py文件打包成exe可执行文件

    前几天做了几个简单的爬虫python程序,于是就想做个窗口看看效果. 首先是,窗口的话,以前没怎么接触过,就先考虑用Qt制作简单的ui.这里用前面sinanews的爬虫脚本为例,制作一个获取当天sin ...

  5. 关于label和span设置width无效问题解决方法

    转:http://www.jb51.net/web/113507.html 大家可能不知道默认情况下label.span 设置width 是无效的,只有当display:block时,我们所设置的wi ...

  6. Dreamweaver如何开启代码错误提示,报错代码。

    DW的代码错误即无效提示功能设置:在DW代码窗口左面有一列很小的功能按钮,在其中寻找"高亮显示无效代码",选中之后就可以看到无效的代码会被添加背景色,会让你容易辨识.改正后背景色会 ...

  7. 解决Appium 抓取toast

    首先我们先看看这个gif,图中需要,要抓取的字符串--->请输入转让份数 1.要导入java-client-5.0.0-SNAPSHOT.jar 包的地址:链接:http://pan.baidu ...

  8. PMP和PRINCE2应该选择哪个?光环国际项目管理认证

    对于项目管理课程的选择,我们不能盲目地做选择,一定要从自身实际出发.从来都没有更好的课程,只有更合适自己的课程. 那么,如何选择合适自己的项目管理课程呢? 让我们从PMP与PRINCE2之间的差异开始 ...

  9. PMBOK 和 PRINCE2的技术不同的地方是什么

    首先,PMBOK是一个框架指导,PRINCE2是一种实现方法. PMBOK是一种建议及最佳实践的集锦.PMBOK包含项目管理的工具和技术并且是一个指导,告诉我们如何做事情,在一种环境中怎样处理问题;而 ...

  10. 学习smart gwt 的一些好的网站

    最近在学smart gwt,这个框架和我们比较熟悉的SSH实现思路上有点不一样,因为技术是外国的,所以好多东西都是英文的,正因为是英文的,我们学到的东西才是最多最好的,好了,网站如下: gwt api ...