问题描述:

Rabin-Karp的预处理时间是O(m),匹配时间O( ( n - m + 1 ) m )既然与朴素算法的匹配时间一样,而且还多了一些预处理时间,那为什么我们还要学习这个算法呢?虽然Rain-Karp在最坏的情况下与朴素匹配一样,但是实际应用中往往比朴素算法快很多。而且该算法的期望匹配时间是O(n)【参照《算法导论》】,但是Rabin-Karp算法需要进行数值运算,速度必然不会比KMP算法快,那我们有了KMP算法以后为什么还要学习Rabin-Karp算法呢?个人认为学习的是一种思想,一种解题的思路,当我们见识的越多,眼界也就也开阔,面对实际问题的时候,就能找到更加合适的算法。比如二维模式匹配,Rabin-Karp就是一种好的选择。

而且Rabin-Karp算法非常有趣,将字符当作数字来处理,基本思路:如果Tm是一个长度为 |P| 的T的子串,且转换为数值后模上一个数(一般为素数)与模式字符串P转换成数值后模上同一个数的值相同,则Tm可能是一个合法的匹配。

该算法的难点就在于p和t的值可能很大,导致不能方便的对其进行处理。对这个问题有一个简单的补救办法,用一个合适的数q来计算p和t的模。每个字符其实十一个十进制的整数,所以p,t以及递归式都可以对模q进行,所以可以在O(m)的时间里计算出模q的p值,在O(n - m + 1)时间内计算出模q的所有t值。参见《算法导论》或http://net.pku.edu.cn/~course/cs101/2007/resource/Intro2Algorithm/book6/chap34.htm

递推式是如下这个式子:

ts+1 = (d ( ts -T[s + 1]h) + T[s + m + 1 ] ) mod q

例如,如果d = 10 (十进制)m= 5, ts = 31415,我们希望去掉最高位数字T[s + 1] = 3,再加入一个低位数字(假定 T[s+5+1] = 2)就得到:

ts+1 = 10(31415 - 1000*3) +2 = 14152

代码示例:

    1. *Copyright(c) Computer Science Department of XiaMen University
    2. *
    3. *Authored by laimingxing on: 2012年 03月 04日 星期日 18:18:28 CST
    4. *
    5. * @desc:
    6. *
    7. * @history
    8. */
    9. #include <stdio.h>
    10. #include <math.h>
    11. #include <assert.h>
    12. #include <string.h>
    13. #include <stdlib.h>
    14. #define d 256// number of characters in the alphabet
    15. #define PRIME 127 //A prime number
    16. void RABIN_KARP_MATCHER( char *T, char *P, int q)
    17. {
    18. assert( T && P && q > 0 );
    19. int M = strlen( P );
    20. int N = strlen( T );
    21. int i, j;
    22. int p = 0;//hash value for pattern
    23. int t = 0;//hash value for txt
    24. int h = 1;
    25. //the value of h would be "pow( d, M - 1 ) % q "
    26. for( i = 0; i < M - 1; i++)
    27. h = ( h * d ) % q;
    28. for( i = 0; i < M; i++ )
    29. {
    30. p = ( d * p + P[i] ) % q;
    31. t = ( d * t + T[i] ) % q;
    32. }
    33. //Slide the pattern over text one by one
    34. for( i = 0; i <= N - M; i++)
    35. {
    36. if( p == t)
    37. {
    38. for( j = 0; j < M; j++)
    39. if(T[i+j] != P[j])
    40. break;
    41. if( j == M )
    42. printf("Pattern occurs with shifts: %d\n", i);
    43. }
    44. //Caluate hash value for next window of test:Remove leading digit,
    45. //add trailling digit
    46. if( i < N - M )
    47. {
    48. t = ( d * ( t - T[i] * h ) + T[i + M] ) % q;
    49. if( t < 0 )
    50. t += q;//按照书上的伪代码会出现t为负的情况,则之后的计算就失败了。
    51. }
    52. }
    53. }
    54. int main(int argc, char* argv[])
    55. {
    56. char txt[] = "GEEKS FOR GEEKS";
    57. char pat[] = "GEEK";
    58. RABIN_KARP_MATCHER( txt, pat, 127 );
    59. return 0;
    60. }</SPAN>

Rabin-Karp【转载】的更多相关文章

  1. 算法——字符串匹配Rabin-Karp算法

    前言 Rabin-Karp字符串匹配算法和前面介绍的<朴素字符串匹配算法>类似,也是相应每一个字符进行比較.不同的是Rabin-Karp採用了把字符进行预处理,也就是对每一个字符进行相应进 ...

  2. Leetcode #28. Implement strStr()

    Brute Force算法,时间复杂度 O(mn) def strStr(haystack, needle): m = len(haystack) n = len(needle) if n == 0: ...

  3. Hash function

    Hash function From Wikipedia, the free encyclopedia   A hash function that maps names to integers fr ...

  4. LintCode ---- 刷题总结

    对于一个给定的 source 字符串和一个 target 字符串,你应该在 source 字符串中找出 target 字符串出现的第一个位置(从0开始).如果不存在,则返回 -1. 基本:两重for循 ...

  5. 九章lintcode作业题

    1 - 从strStr谈面试技巧与代码风格 必做题: 13.字符串查找 要求:如题 思路:(自写AC)双重循环,内循环读完则成功 还可以用Rabin,KMP算法等 public int strStr( ...

  6. 模式字符串匹配问题(KMP算法)

    这两天又看了一遍<算法导论>上面的字符串匹配那一节,下面是实现的几个程序,可能有错误,仅供参考和交流. 关于详细的讲解,网上有很多,大多数算法及数据结构书中都应该有涉及,由于时间限制,在这 ...

  7. Rolling Hash(Rabin-Karp算法)匹配字符串

    您可以在我的个人博客中访问此篇文章: http://acbingo.cn/2015/08/09/Rolling%20Hash(Rabin-Karp%E7%AE%97%E6%B3%95)%E5%8C%B ...

  8. 《算法》第五章部分程序 part 5

    ▶ 书中第五章部分程序,包括在加上自己补充的代码,Knuth-Morris-Pratt 无回溯匹配,Boyer - Moore 无回溯匹配,Rabin - Karp 指纹匹配 ● Knuth-Morr ...

  9. 字符串匹配&Rabin-Karp算法讲解

    问题描述: Rabin-Karp的预处理时间是O(m),匹配时间O( ( n - m + 1 ) m )既然与朴素算法的匹配时间一样,而且还多了一些预处理时间,那为什么我们还要学习这个算法呢?虽然Ra ...

  10. Leetcode Lect3 时间复杂度/空间复杂度

    时间复杂度 复杂度 可能对应的算法 备注 O(1) 位运算 常数级复杂度,一般面试中不会有 O(logn) 二分法,倍增法,快速幂算法,辗转相除法   O(n) 枚举法,双指针算法,单调栈算法,KMP ...

随机推荐

  1. BigDecimal四舍五入使用总结

    //BigDecimal四舍五入double f1 = new BigDecimal(1).setScale(2,RoundingMode.HALF_UP).doubleValue();//转化成字符 ...

  2. SpringMvc+Spring3+MyBatis整合

    1.MyBatis 例子 首先,单独使用MyBatis时: import java.io.IOException; import java.io.Reader; import org.apache.i ...

  3. SVN仓库迁移到Git的完美解决办法

    参考文章Converting a Subversion repository to Git 1 使用git svn clone 拷贝svn仓库 cd ~/test_repo git svn clone ...

  4. Ext 创建workspace package

    Ext 创建workspace package Package ExtJs Project 1. 创建工作区间文件目录 md wpt 2. 进入目录 cd wpt 3. 创建 创建工作区间 sench ...

  5. script标签跨域的缺点

    1,只支持GET,不支持其他例如:put,delete,post等 2,想拿到数据需要服务器端做出相应处理,必须在window域下面有对应的执行函数.例如:window.callbackHandler ...

  6. h1b期间回国须知

    今天才搞明白几点 1. visa 和 status 是两个不同的东西,status能保证合法在美国.visa能保证合法进入美国 所以,h1b十月份的身份转换时status的转换,如果回国还需要重新办h ...

  7. Java 9 揭秘(10. 模块API)

    Tips 做一个终身学习的人. 在本章节中,主要介绍以下内容: 什么是模块 API 如何在程序中表示模块和模块描述 如何读取程序中的模块描述 如何表示模块的版本 如何使用Module和ModuleDe ...

  8. Django学习(七)---添加新文章页面

    在template中添加add_article.html页面 (form  input)请求方法使用post 这个页面涉及到了两个响应函数 1)显示页面的响应函数  2)表单提交的响应函数 add_a ...

  9. 分享网上搜到的Oracle中对判定条件where 1=1的正解

    今天在网上找到了Oracle中对判定条件where 1=1的正解,粘贴出来和大家分享下 1=1 是永恒成立的,意思无条件的,也就是说在SQL语句里有没有这个1=1都可以. 这个1=1常用于应用程序根据 ...

  10. Spark笔记——技术点汇总

    目录 概况 手工搭建集群 引言 安装Scala 配置文件 启动与测试 应用部署 部署架构 应用程序部署 核心原理 RDD概念 RDD核心组成 RDD依赖关系 DAG图 RDD故障恢复机制 Standa ...