Miller-Rabin 素性测试
根据费马小定理,若p为素数,则必有a^(p-1) mod p=1 对和p互质的a成立。
根据二次探测定理:如果p是素数,且0<x<p,则方程x^2 mod p=1的解为1或p-1。
所以若p为素数,则必有a^(p-1) mod p 的平方根为1或-1
分解p-1为d*2^s,其中d为奇数
从i=0逐次计算a^(d*2^(s-i)),相当于“开方”,若得到-1或追查到a^d=1 (mod p),则p通过测试,否则不通过
时间复杂度O(k*(logn)^3) (其中k为选的a的个数(the more the better?))
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; const int prime[]={,,,,,,,,}; int n; int quick(int a,int b,int mod){
int sum=;
for(;b;b>>=,a=a*a%mod)
if(b&) sum=sum*a%mod;
return sum;
} bool Rabin_Miller(int p,int a){
if(p==) return ;
if((p&)==||p==) return ;
int d=p-;
while((d&)==) d>>=;
int m=quick(a,d,p);
if(m==) return ;
for(;d<p;d<<=,m=m*m%p)
if(m==p-) return ;
return ;
} bool isprime(int x){
for(int i=;i<;i++){
if(x==prime[i]) return ;
if(!Rabin_Miller(x,prime[i])) return ;
}
return ;
} int main(){
scanf("%d",&n);
if(isprime(n)) puts("Yes!");
else puts("No!");
return ;
}
Miller-Rabin 素性测试的更多相关文章
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- 米勒罗宾素性测试(Miller–Rabin primality test)
如何判断一个素是素数 效率很高的筛法 打个表 (素数的倍数一定是合数) 就可以解决问题. 筛选法的效率很高,但是遇到大素数就无能为力了. 米勒罗宾素性测试是一个相当著名的判断是否是素数的算法 核心为费 ...
- 与数论的厮守01:素数的测试——Miller Rabin
看一个数是否为质数,我们通常会用那个O(√N)的算法来做,那个算法叫试除法.然而当这个数非常大的时候,这个高增长率的时间复杂度就不够这个数跑了. 为了解决这个问题,我们先来看看费马小定理:若n为素数, ...
- 素数与素性测试(Miller-Rabin测试)
转载自Matrix大牛的博客 把代码翻译成C++ http://www.matrix67.com/blog/archives/234 题目链接: http://hihocoder.com/proble ...
- 【数学】【筛素数】Miller-Rabin素性测试 学习笔记
Miller-Rabin是一种高效的随机算法,用来检测一个数$p$是否是素数,最坏时间复杂度为$\log^3 p$,正确率约为$1-4^{-k}$,$k$是检验次数. 一.来源 Mil ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- miller_rabin_素性测试
摘自:http://blog.csdn.net/pi9nc/article/details/27209455 看了好久没看懂,最后在这篇博客中看明白了. 费马定理的应用,加上二次探测定理. Ferma ...
- POJ1811- Prime Test(Miller–Rabin+Pollard's rho)
题目大意 给你一个非常大的整数,判断它是不是素数,如果不是则输出它的最小的因子 题解 看了一整天<初等数论及其应用>相关部分,终于把Miller–Rabin和Pollard's rho这两 ...
随机推荐
- cef3和duilib简单仿有道词典学习
由于最近换工作的原因,也没啥事,就简单学习了一下cef3和duilib,楼主之前是做MFC框架下的windows开发的,对界面库和新的客户端开发模式也有所了解,现在的大部分客户端都是基本的客户端框架下 ...
- 提高java编程质量 - (四)i++ 和 ++i 探究原理
先看一个例子: package com.test; public class AutoIncrement { public static void main(String[] args) { int ...
- 解决其他浏览器没有propertychange事件
监听实现: /** * Listener.js * 此类用于解决非ie下,通过js改变input的值时, * 无法触发其事件的问题(如:onpropertychange, oninput, oncha ...
- [codeforces167B]Wizards and Huge Prize
B. Wizards and Huge Prize time limit per test: 2 seconds memory limit per test: 256 megabytes input: ...
- solr学习笔记section2-solr单机(节点)简单的core操作
在上一节中我们已经成功部署和运行了一个solr应用,那么我们就可以通过这个正在运行的solr来创建一些文档,并进行搜索. 首先介绍一下core这个概念,core在solr中类似与关系型数据库中一张表的 ...
- c# networkcomms 3.0实现模拟登陆总结
最近项目需要做一个客户查询状态系统,当前上位机缺少服务功能,于是找到了networkcomms 开源框架,作为项目使用. 最新版networkcomms 下载地址:https://github.com ...
- Primeton BPS 6.7+MyEclipse_5.5.1GA_E3.2.2插件安装
准备 Primeton_BPS_6.7_Developer MyEclipse5.5插件版 BPS安装 MyEclipse插件安装 点击MyEclipse_5.5.1GA_E3.2.2_Install ...
- R语言重要数据集分析研究——需要整理分析阐明理念
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标 ...
- java 单链表的实现
package liaobiao;//链表测试public class Node { private int value; private Node next; //存放下一个节点的指针 //构造方法 ...
- java数组中取出最大值
class Demo{ public static void main(String []args){ int[] arr={3,54,456,342,2798}; int max=getMax(ar ...