Bomb

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1853    Accepted Submission(s): 608

Problem Description
There are N bombs needing exploding.

Each bomb has three attributes: exploding radius ri, position (xi,yi) and lighting-cost ci which means you need to pay ci cost making it explode.

If a un-lighting bomb is in or on the border the exploding area of another exploding one, the un-lighting bomb also will explode.

Now you know the attributes of all bombs, please use the minimum cost to explode all bombs.

 
Input
First line contains an integer T, which indicates the number of test cases.

Every test case begins with an integers N, which indicates the numbers of bombs.

In the following N lines, the ith line contains four intergers xi, yi, ri and ci, indicating the coordinate of ith bomb is (xi,yi), exploding radius is ri and lighting-cost is ci.

Limits
- 1≤T≤20
- 1≤N≤1000
- −108≤xi,yi,ri≤108
- 1≤ci≤104

 
Output
For every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the minimum cost.
 
Sample Input
1
5
0 0 1 5
1 1 1 6
0 1 1 7
3 0 2 10
5 0 1 4
 
Sample Output
Case #1: 15
 
Source

思路:将给出的点之间连边,对每个强联通分量去最小值即可。

代码:

 ```C++
#include<bits/stdc++.h>
//#include<regex>
#define db double
#include<vector>
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define inf 0x3f3f3f3f3f3f3f3f
#define fr(i, a, b) for(int i=a;i<=b;i++)
const int N = 4e6 + ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const db eps = 1e-;
const db PI = acos(-1.0);
using namespace std;
struct P {
int f, to, nxt;
} e[N]; struct PP {
int x, y, r, c;
} a[N];
int hea[];
int n, cnt, sig, tt, cont;
int deg[], sta[], col[], vis[], low[], dfn[], need[], contz[]; void add(int f, int to) {//建边
e[cont].to = to;
e[cont].f = f;
e[cont].nxt = hea[f];
hea[f] = cont++;
} void tarjan(int u) {//强联通分量
vis[u] = ;
low[u] = dfn[u] = cnt++;
sta[++tt] = u;
for (int i = hea[u]; i != -; i = e[i].nxt) {
int v = e[i].to;
if (vis[v] == ) tarjan(v);
if (vis[v] == ) low[u] = min(low[u], low[v]);
}
if (dfn[u] == low[u]) {
sig++;
do {
col[sta[tt]] = sig;
vis[sta[tt]] = -;
} while (sta[tt--] != u);
}
} void cal() {
cnt = ;
sig = ;
tt = -;
memset(dfn, , sizeof(dfn));memset(col, , sizeof(col));memset(vis, , sizeof(vis));
memset(sta, , sizeof(sta));memset(low, , sizeof(low));memset(deg, , sizeof(deg));
memset(contz, 0x3f3f3f3f, sizeof(contz));
for (int i = ; i < n; i++) if (!vis[i]) tarjan(i);
for (int i = ; i < cont; i++) {
int u = e[i].f;
int v = e[i].to;
if (col[u] != col[v]) deg[col[v]]++;
}
for (int i = ; i < n; i++) if (!deg[col[i]]) contz[col[i]] = min(contz[col[i]], a[i].c);
int ans = ; for (int i = ; i <= sig; i++) if (!deg[i]) ans += contz[i];
pi(ans);
} int main() {
int t;
ci(t);
for (int ii = ; ii <= t; ii++) {
ci(n);
for (int i = ; i < n; i++) scanf("%d%d%d%d", &a[i].x, &a[i].y, &a[i].r, &a[i].c);
cont = ;
memset(hea, -, sizeof(hea));
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
ll tmp = a[i].x - a[j].x;
ll tmp2 = a[i].y - a[j].y;
ll d1 = tmp * tmp + tmp2 * tmp2;
ll d2 = 1ll * a[i].r * a[i].r;
if (d1 <= d2) add(i, j);
}
}
printf("Case #%d: ", ii);
cal();
}
return ;
} ```
 #include<bits/stdc++.h>
//#include<regex>
#define db double
#include<vector>
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define inf 0x3f3f3f3f3f3f3f3f
#define fr(i, a, b) for(int i=a;i<=b;i++)
const int N = 4e6 + ;
const int mod = 1e9 + ;
const int MOD = mod - ;
const db eps = 1e-;
const db PI = acos(-1.0);
using namespace std;
struct P {
int f, to, nxt;
} e[N]; struct PP {
int x, y, r, c;
} a[N];
int hea[];
int n, cnt, sig, tt, cont;
int deg[], sta[], col[], vis[], low[], dfn[], need[], contz[]; void add(int f, int to) {//建边
e[cont].to = to;
e[cont].f = f;
e[cont].nxt = hea[f];
hea[f] = cont++;
} void tarjan(int u) {//强联通分量
vis[u] = ;
low[u] = dfn[u] = cnt++;
sta[++tt] = u;
for (int i = hea[u]; i != -; i = e[i].nxt) {
int v = e[i].to;
if (vis[v] == ) tarjan(v);
if (vis[v] == ) low[u] = min(low[u], low[v]);
}
if (dfn[u] == low[u]) {
sig++;
do {
col[sta[tt]] = sig;
vis[sta[tt]] = -;
} while (sta[tt--] != u);
}
} void cal() {
cnt = ;
sig = ;
tt = -;
memset(dfn, , sizeof(dfn));memset(col, , sizeof(col));memset(vis, , sizeof(vis));
memset(sta, , sizeof(sta));memset(low, , sizeof(low));memset(deg, , sizeof(deg));
memset(contz, 0x3f3f3f3f, sizeof(contz));
for (int i = ; i < n; i++) if (!vis[i]) tarjan(i);
for (int i = ; i < cont; i++) {
int u = e[i].f;
int v = e[i].to;
if (col[u] != col[v]) deg[col[v]]++;
}
for (int i = ; i < n; i++) if (!deg[col[i]]) contz[col[i]] = min(contz[col[i]], a[i].c);
int ans = ; for (int i = ; i <= sig; i++) if (!deg[i]) ans += contz[i];
pi(ans);
} int main() {
int t;
ci(t);
for (int ii = ; ii <= t; ii++) {
ci(n);
for (int i = ; i < n; i++) scanf("%d%d%d%d", &a[i].x, &a[i].y, &a[i].r, &a[i].c);
cont = ;
memset(hea, -, sizeof(hea));
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) {
ll tmp = a[i].x - a[j].x;
ll tmp2 = a[i].y - a[j].y;
ll d1 = tmp * tmp + tmp2 * tmp2;
ll d2 = 1ll * a[i].r * a[i].r;
if (d1 <= d2) add(i, j);
}
}
printf("Case #%d: ", ii);
cal();
}
return ;
}

HDU 5934 强联通分量的更多相关文章

  1. HDU 5934 (强连同分量+缩点)

    题意: 给出n个炸弹的信息 :坐标x , 坐标y , 爆炸半径 , 成本: 如果一个炸弹被引爆那这个范围的都爆炸 , 问最小的成本是多少? 题意:首先先来个n^2 暴力出某个炸弹爆炸波及的其他炸弹,用 ...

  2. hdu 1269 (强联通分量Tarjan入门)

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  3. HDU 1269 迷宫城堡 【强联通分量(模版题)】

    知识讲解: 在代码里我们是围绕 low 和 dfn 来进行DFS,所以我们务必明白 low 和 dfn 是干什么的? 有什么用,这样才能掌握他.   1.  dfn[]  遍历到这个点的时间 2.   ...

  4. HDU 4685 Prince and Princess(二分匹配+强联通分量)

    题意:婚配问题,但是题目并不要求输出最大匹配值,而是让我们输出,一个王子可以与哪些王妃婚配而不影响最大匹配值. 解决办法:先求一次最大匹配,如果有两个已经匹配的王妃,喜欢她们两个的有两个或者以上相同的 ...

  5. 【强联通图 | 强联通分量】HDU 1269 迷宫城堡 【Kosaraju或Tarjan算法】

      为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明 ...

  6. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  7. [CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)

    题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1 ...

  8. UVa 11324 & 强联通分量+DP

    题意: 一张无向图,求点集使其中任意两点可到达. SOL: 强联通分量中的点要么不选要么全都选,然后缩点DAG+DP 记录一下思路,不想写了...代码满天飞.

  9. BZOJ 1051 & 强联通分量

    题意: 怎么说呢...这种题目有点概括不来....还是到原题面上看好了... SOL: 求出强联通分量然后根据分量重构图,如果只有一个点没有出边那么就输出这个点中点的数目. 对就是这样. 哦还有论边双 ...

随机推荐

  1. 使用nfs作为根文件系统启动,(3)

    通过设置u-boot的bootargs来更改开机自动进入nfs远端服务器,不需要mount指令,实现虚拟机编译程序后直接通过u-boot烧写程序 1  使用nfs作为根文件系统启动 1.1    pr ...

  2. [js高手之路]Vue2.0基于vue-cli+webpack父子组件通信教程

    在git命令行下,执行以下命令完成环境的搭建: 1,npm install --global vue-cli  安装vue命令行工具 2,vue init webpack vue-demo   使用v ...

  3. 0908期 HTML 样式表属性

    1.背景与前景    /*背景色,样式表优先级高*/ background-image:url(路径);    /*设置背景图片(默认)*/ background-attachment:fixed;  ...

  4. jquery 函数大全

    jquery函数大全转载  Attribute:$(”p”).addClass(css中定义的样式类型); 给某个元素添加样式$(”img”).attr({src:”test.jpg”,alt:”te ...

  5. 标题:a++和++a的区别

    以前我也是老搞不懂a++和++a的区别, 后来看了很多资料, 终于总结出来一条规律, 小白专用! 看完这个例子就懂了: 例1:$a = 8, 求 ++a + a++ - --a + a-- + ++a ...

  6. 【2017集美大学1412软工实践_助教博客】团队作业9——测试与发布(Beta版本)

    题目 团队作业9--测试与发布(Beta版本)(http://www.cnblogs.com/happyzm/p/6917253.html) 团队作业9-1 测试与发布成绩 分值 1 0.5 0.5 ...

  7. 姑娘你大胆地往前走——答大二学生XCL之八问

    姑娘你大胆地往前走--答大二学生XCL之八问 以下问题的答案写给我家正在读大二的XCL. 写于 2017-9-13 晚 请问您是为什么选择了IT行业的? 与其说是我选择了行业,不如说是行业选择了我. ...

  8. evak购物车--课程设计(201521123037邱晓娴)

    1. 团队课程设计博客链接 团队博客 2. 个人负责模块或任务说明 1.Java (1)编写用户类Users (2)编写DBConnection类,连接数据库 (3)编写GoodsDAO类,从数据库中 ...

  9. 201521123067 《Java程序设计》第13周学习总结

    201521123067 <Java程序设计>第13周学习总结 1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 书面作业 Q1. 网络基 ...

  10. 201521123110《Java程序设计》第12周学习总结

    1. 本周学习总结 2. 书面作业 1. 字符流与文本文件:使用 PrintWriter(写),BufferedReader(读) 1.1 生成的三个学生对象,使用PrintWriter的printl ...