[Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables
打开prml and mlapp发现这部分目录编排有点小不同,但神奇的是章节序号竟然都为“十二”。
prml:pca --> ppca --> fa
mlapp:fa --> pca --> ppca
这背后又有怎样的隐情?不可告人的秘密又会隐藏多久?
基于先来后到原则,走prml路线。
首先,这部分内容,尤其是pca,都是老掉牙且稳定的技术,既然是统计机器学习,这次的目的就是借概率图来缕一遍思路,以及模型间的内在联系。
我们要建立的是一套完整的知识体系,而非“拿来一用,用完就扔”的态度。
有菜鸡问了,为何你总是强调“体系”?
因为我是马刺队球迷。
首先,我希望大家重视prml的第12章开章这段话:
"本章中,我们⾸先介绍标准的、⾮概率的PCA⽅法,然后我们会说明,当求解线性⾼斯潜在变量模型的⼀种特别形式的最⼤似然解时, PCA如何⾃然地产⽣。这种概率形式的表⽰⽅法会带来很多好处,例如在参数估计时可以使⽤EM算法,对混合PCA模型的推广以及主成分的数量可以从数据中⾃动确定的贝叶斯公式。最后,我们简短地讨论潜在变量概念的几个推广,使得潜在变量的概念不局限于线性⾼斯假设。这种推广包括⾮⾼斯潜在变量,它引出了独⽴成分分析( independent conponent analysis)的框架。这种推广还包括潜在变量与观测变量的关系是⾮线性关系的模型。"
因为大部分人都只关心以下这张图,也就是通过“映射”的角度来理解PCA。
然后,因为理解不全面,或者暂且只关心pca,对后面的部分就出现了理解断层。因为体系,波波维奇劝你要“站得高,看得远”。
PCA:
有关pca的内容,网络资源有太多,以下个人链接能增加一点感性认识和相关内容;至于理性认识,除了动手亲自推倒公式,哪怕是抄一遍,也是极好的。
- [Scikit-learn] 4.4 Dimensionality reduction - PCA
- [Scikit-learn] 1.2 Dimensionality reduction - Linear and Quadratic Discriminant Analysis
因为pca+gmm常常是一个组合,先降维,去掉可能useless的信息,再进行gmm聚类。如此,至少能节省后期聚类时的计算资源。
其他没什么想说的,这个组合实践时确实效果蛮好,PCA也算是重要的预处理工具,数据预处理的地位你懂得,特征工程之百试不爽。
PPCA:
冒出一个“屁+PCA”,恩,本来就挺好用,还要加个“P”? —— 初次见面的初次感受。
PCA也可以被视为概率潜在变量模型的最⼤似然解。如何理解?
From: http://www.miketipping.com/papers/met-mppca.pdf【链接中x是隐变量】
第一步:
先验:
似然:【原理见证明1,t = Wx+mu】
后验:
最后,期望就是最优解。贝叶斯三部曲,没啥可说的,但这里有个M,如果假设σ2 = 0, 再带入结果,这不就是PCA麽。
第二步:
解的形式有了,但解中的变量是多少,比如W应该是多少呢?
通过mle获取,也就是获得W的估值。
(1)
联合分布,再积分掉x得t的边缘分布:
(2)
然后便获取了"t的似然"形式,如下:
求导解似然方程就不再赘述here,过程详见链接。
答案中就包含了W的估值。读后感就是:一切皆是套路。
证明1
假设z是标准高斯,那么线性组合的每个x也是高斯。
Figure, 证明1
这个证明看似很无聊,让我们思维大胆地扩展一下:
线性组合类似于没激活神经元的神经网络(NN);因为有了激活函数,nn才能解决非线性问题。
但这里对应的貌似不是激活函数,而是概率。概率能否达到非线性的效果?为什么?
与传统的PCA相⽐,会带来一个本人感兴趣的优势就是,可以利用em高效求解。
好比用几何和代数解决同一个问题:用em总比“求解特征向量特征值”要划算的多,而且结果等价。当然还有其他优势,例如处理missing data。
此时,两个问题可能在菜鸡小脑中回荡:
- 不要问我mle方法中怎么涉及到了特征值计算,自己写一下W的估值瞧瞧。
- 感觉似乎都搞完了啊,但怎么又涉及到了em?
读到这里,你如果有同样的疑惑,恭喜。好处便是,你不会感觉这系列文章的思维读来怪异,因为你我的脑回路可能是相通的。
因为mle在高维计算时没啥优势,所以考虑em。
这里看似是放弃了由mle得到的精确值,转而选择em带来的估计值,建议你想想,能提高内力心法。
因为FA就是ppca的方差扩展版本,所以,em的方法在fa中聊一次就好,节能。
FA:
cs229
既然是ppca的扩展,那么,咱就看看扩展ppca会发生什么?
首先,凭什么ppca的“先验”是标准高斯?改一改会如何?
结论:x的边缘分布可以变为原来熟悉的样子。
按照fa的思路,凭什么x的边缘分布的方差是标准化的东东,改改会如何?
结论:还是这个熟悉的形式。
可见,“龙生龙,凤生凤,老鼠的儿子会打洞”,高斯的衍生还是那么“高斯”。
但问题是:边缘分布有点复杂,所以用em。
链接中用的Λ表示W,其他符号一致。
E step:
既然是em,E步骤计算:p(z(i) | x(i) ; µ, Λ, Ψ)
这里技巧在于,z和x都是高斯,一并构成了一个联合变量p(z, x),这个东西通过p(z) * p(x|z)就可以求得。
那么P(z|x)就可以通过以下公式直接求得:
调整一下思维:
p(z), p(x|z), p(x)都有,本可以通过贝叶斯公式计算,但几个这么复杂的高斯除来除去,是个什么鬼?感觉也不好计算。
所以,先人给出了以上公式,通过联合概率就直接写出结果了。
注意,联合概率是个高维高斯,且有两部分,一部分也可能包含多个维度。
M step:
思路就是通过log{P(x)}对各个参数求导。具体步骤,详见cs229链接,有超详细步骤,不再赘述。
先写到这里,本文只记录学习思路,帮助你建立知识体系,不会也不可能取代任何教材。
这一领域的东西,要充分领会,只能亲自动手算上一算。有时,你可能卡在一处无法进一步理解,该文可能会起到一点点“雪中送炭”的作用,这就足够了。
最后,再看:
prml:pca --> ppca --> fa
mlapp:fa --> pca --> ppca
如写小说,一个循序渐进,一个倒叙法。
[Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables的更多相关文章
- [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process
科班出身,贝叶斯护体,正本清源,故拿”九阳神功“自比,而非邪气十足的”九阴真经“: 现在看来,此前的八层功力都为这第九层作基础: 本系列第九篇,助/祝你早日hold住神功第九重,加入血统纯正的人工智能 ...
- [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders
本是neural network的内容,但偏偏有个variational打头,那就聊聊.涉及的内容可能比较杂,但终归会 end with VAE. 各个概念的详细解释请点击推荐的链接,本文只是重在理清 ...
- [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference
涉及的领域可能有些生僻,骗不了大家点赞.但毕竟是人工智能的主流技术,在园子却成了非主流. 不可否认的是:乃值钱的技术,提高身价的技术,改变世界观的技术. 关于变分,通常的课本思路是: GMM --&g ...
- [Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution
使用Boltzmann distribution还是Gibbs distribution作为题目纠结了一阵子,选择前者可能只是因为听起来“高大上”一些.本章将会聊一些关于信息.能量这方面的东西,体会“ ...
- [Bayesian] “我是bayesian我怕谁”系列 - Exact Inferences
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...
- [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference
要整理这部分内容,一开始我是拒绝的.欣赏贝叶斯的人本就不多,这部分过后恐怕就要成为“从入门到放弃”系列. 但,这部分是基础,不管是Professor Daphne Koller,还是统计学习经典,都有 ...
- [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes+prior
先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...
- [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior
先明确一些潜规则: 机器学习是个collection or set of models,一切实践性强的模型都会被归纳到这个领域,没有严格的定义,’有用‘可能就是唯一的共性. 机器学习大概分为三个领域: ...
- [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models
循序渐进的学习步骤是: Markov Chain --> Hidden Markov Chain --> Kalman Filter --> Particle Filter Mark ...
随机推荐
- angularui 分页
分页组件的使用 <!DOCTYPE html> <html lang="en" ng-app="myApp"> <head> ...
- 1.Bootstrap-简介
1.介绍 Bootstrap 是一个用于快速开发 Web 应用程序和网站的前端框架.Bootstrap 是基于 HTML.CSS.JAVASCRIPT 的. 2.HTML 模板 一个使用了 Boots ...
- JAVA 一步一步向上爬
Java分为基本数据类型和引用数据类型(类.接口.数组) Integer.MAX_VALUE 浮点型默认为double java采用Unicode char为两个字节 Unicode为每一个字符定制了 ...
- Java 中与(&)短路与(&&)以及 或(|)短路或(||)的关系
一.逻辑运算符的使用 1)逻辑运算符的连接的是布尔表达式,要与位运算符做区分. 2)使用方法: public class Test { public static void main(String[ ...
- 【OOM】GC overhead limit exceeded
我遇到这样的问题,本地部署时抛出异常java.lang.OutOfMemoryError:GC overhead limit exceeded导致服务起不来,查看日志发现加载了太多资源到内存,本地的性 ...
- Linux入门之常用命令(5)Bash
bash优点 1.命令编辑能力 记录使用过的命令 ~/.bash_history 记录上次的历史命令 2.补全功能 指令补全两下tab 文件名补全 3.命令别名 alias [别名]=‘’ 4. ...
- hdu3756三分基础题
Dome of Circus Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- P1035
P1035 时间限制: 1 Sec 内存限制: 128 MB提交: 87 解决: 36[提交][状态][讨论版] 题目描述 给出一张n*n(n< =100)的国际象棋棋盘,其中被删除了一些点 ...
- S2_SQL_第四章
1.使用EXISTS语句判断该数据库对象是否存在的语法: DROP TABLE IF EXISTS temp; 2. EXISTS作为WHERE语句的子查询: SELECT <字段>FRO ...
- JS获取随机的16位十六进制的数
直接上代码: function getRamNumber(){ var result=''; for(var i=0;i<16;i++){ result+=Math.floor(Math.ran ...