import numpy as np
import pandas as pd
from numpy import random
from numpy.random import randn #######生成矩阵################ # #将列表放入Numpy数组
# data=[2,3,4,5]
# arr=np.array(data)
# print(arr) # #创建二维矩阵
# data=[[1,2,3],[7,8,9]]
# arr=np.array(data)
# print(arr) # #输出arr的数据类型
# data=[2,3,4,5]
# arr=np.array(data)
# print(arr.dtype) #打印输出8*4的二维矩阵
# a=np.empty([8,4])
# print(a) # #输出2*3*2的三维矩阵
# arr=np.empty([2,3,2])
# print(arr) # #输出2*4的矩阵
# a=np.empty([2,4])
# for i in range(2):
# a[i]=i
# print(a) # #输出两个2*4的矩阵
# a=np.empty([2,4])
# for i in range(2):
# a[i]=i
# print(a) # #二维矩阵
# a=[[2,1,4,6]]
# print(a) # #输出2*2的矩阵,指定数据类型
# arr=np.array([2,2],dtype='int32')
# print(arr) # #表示在【0-31】这32个数字中分成8行4列
# arr=np.arange(32).reshape((8,4))
# print(arr) # #输出 0-9
# print(np.arange(10)) # #在1和2之间(包括1和2)分成等值的3份输出,结果:[ 1. 1.5 2. ]
# print(np.linspace(1,2,3)) # #输出行列都为9的单位矩阵
# print(np.eye(9)) # #输出全为0的一维矩阵
# print(np.zeros([3])) # #输出均为0的4维矩阵,参数分别为维度,即第一,二,三,四维
# print(np.zeros([2,2,2,2])) # #分别输出1.0,1.5,2.0
# for x in np.linspace(1,2,3):
# print(x) # #输出2*4的二维矩阵
# print(np.random.rand(2,4)) ##2*2的矩阵
# a=np.random.rand(4).reshape(2,2)
# print(a) # #输出1-10之间随机的4个整数
# print(np.random.randint(1,10,4)) # ################索引和切片##########
# #输出1,2
# arr=np.arange(10)
# print(arr[1:3]) # #将第5个到第7个改为12
# arr=np.arange(10)
# arr[5:8]=12
# print(arr) # #将第5个数之后全都改成10
# arr=np.arange(10)
# arr[5:]=10
# print(arr) # #将arr切分成二维矩阵看,将arr[6]改成1514
# arr=np.arange(10)
# a=arr[5:8]
# a[1]=1514
# print(arr) # #想一下这个是什么意思呢
# arr=np.arange(10)
# a=arr[5:8]
# a[:]=1514
# print(arr) #copy和'='的区别
# arr=np.arange(10)
# print("arr:",arr)
# b=arr.copy()
# print("b.copy:",b)
# b[2]=100
# print("after change:",b)
# print("arr:",arr) # arr=np.arange(10)
# print("arr:",arr)
# c=arr
# print("copy",c)
# c[2]=100
# print("after copy",c)
# print("arr:",arr)
#copy是复制一份,而'='是视图 #[,]和[][]是相同的
# arr=np.array([[1,2,3],[4,5,6]])
# print(arr[1,1])
# print(arr[1][1]) #axis 0 1
#0表示从行看,1表示从列看 #二维切片索引 # #输出第1行
# arr=np.arange(1,10).reshape(3,3)
# print(arr[:1]) # #输出2,3行
# arr=np.arange(1,10).reshape(3,3)
# print(arr[1:]) # #输出第一行第一个
# arr=np.arange(1,10).reshape(3,3)
# print(arr[:1,:1]) # #输出所有行和2,3列
# arr=np.arange(1,10).reshape(3,3)
# print(arr[:,1:]) #规律:[:]指全部二维矩阵 [:2]指[0,2)的行 # print(np.zeros([3,3]))
# print(np.zeros([10]).max())
# print(np.empty([2,3,2],dtype='int32').max())
# print(np.arange(9).reshape(3,3)[:2,1:])
# a=np.arange(12).reshape([3,4]) # a=np.reshape(a,[4,3])
# print(a) #############转置############ #转置,相乘
# t=np.arange(9).reshape([3,3]).T
# t1=np.arange(1,10,1).reshape([3,3])
# print(t.dot(t1)) #乘
# lst1=np.array([1,2,3,4])
# lst2=np.array([10,20,30,40])
# print(lst1.reshape([2,2]))
# print(np.dot(lst1,lst2)) #这两个有什么区别?
# b=np.random.random([1*2])#[ 0.6778996 0.29006868]
# print(b)
# b=np.random.random([1]*2)#[[ 0.09265586]]
# print(b) ##reshape中的参数是维度
# ar=np.arange(16).reshape([2,2,4])
# print(ar)
# c=np.arange(16).reshape([2,2,4]) #三维矩阵转置
# c=np.arange(16).reshape([2,2,4])
# d=np.transpose(c,[1,0,2])
# e=c.T
# print(d)
# print(e) # #矩阵横向合并
# a1 = np.array([[1,2],[3,4]])
# a2 = np.array([[5,6],[7,8]])
# print(np.hstack([a1,a2])) # #矩阵纵向合并
# a1 = np.array([[1,2],[3,4]])
# a2 = np.array([[5,6],[7,8]])
# print(np.vstack([a1,a2])) ############函数###########
# #取指数函数
# print(np.exp([3,1])) # #接受两个一维数组,产生两个二维矩阵
# points=np.arange(-5,5,1)
# xs,ys=np.meshgrid(points,points)
# print(xs)
# print(ys) # ##where过滤条件
# #将正态分布a中元素大于0的改成1,小于0的改成-1
# a=randn(9).reshape([3,3])
# print(a)
# print(np.where(a>0,1,-1)) #文件保存
# arr=np.arange(10)
# np.save('abc',arr)
# print(np.load('abc.npy'))
# a=np.arange(1,10).reshape([3,3]) #转置和逆
# a=np.arange(10)
# b=a.T
# b=np.invert(a)#矩阵的逆 # #行相加,第二个等于第一个加第二个,依次类推
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumsum(0)) # #列相加,第二个等于第一个加第二个,依次类推
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumsum(0)) # #行累积
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumprod(0)) # #列累积
# a=np.array([[1,2,3],[4,5,6],[7,8,9]])
# print(a.cumprod(1)) ##按行排序,从左到右依次增大
# arr=randn(5,3)
# arr.sort(1)
# print(arr) #随机漫步
# nsteps=1000
# draws=np.random.randint(0,2,size=nsteps)
# steps=np.where(draws>0,1,-1)
# walk=steps.cumsum()
# print(walk)
#-----------------------------------------------------------

下面是一些函数:

NumPy基础练习(练一遍搞定NumPy)的更多相关文章

  1. numpy 读取txt为array 一行搞定

    vec = np.genfromtxt('wiki.ch.text.vector', skip_header=1, delimiter=' ', dtype=None)skip_header=1是跳过 ...

  2. Python Numpy基础教程

    Python Numpy基础教程 本文是一个关于Python numpy的基础学习教程,其中,Python版本为Python 3.x 什么是Numpy Numpy = Numerical + Pyth ...

  3. NumPy 基础知识·翻译完成

    原文:Numpy Essentials 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 ApacheCN 面试求职交流群 7241 ...

  4. 100天搞定机器学习:PyYAML基础教程

    编程中免不了要写配置文件,今天我们继续Python网络编程,学习一个比 JSON 更简洁和强大的语言----YAML .本文老胡简单介绍 YAML 的语法和用法,以及 YAML 在机器学习项目中的应用 ...

  5. 零java基础搞定微信Server

    自从打通了微信client到BLE设备端的通道.我的工作就转移到了server端了.微信的BlueDemoServer是以java编写,而本尊仅仅懂得嵌入式,对JavaWeb一窍不通. 本尊贵为IOT ...

  6. Android零基础入门第7节:搞定Android模拟器,开启甜蜜之旅

    原文:Android零基础入门第7节:搞定Android模拟器,开启甜蜜之旅 在前几期中总结分享了Android的前世今生.Android 系统架构和应用组件那些事.带你一起来聊一聊Android开发 ...

  7. 第4天 | 12天搞定Python,基础语法(下)

    为了方便你的学习,减轻负重,我特意将基础语法分成上下两部分.希望你喜欢这种方式,如果不喜欢,你可以跟我说,反正我是不会改的,哈哈~~. 如果上部分,你还没看的话,先去看<第4天 | 12天搞定P ...

  8. 100天搞定机器学习|Day1数据预处理

    数据预处理是机器学习中最基础也最麻烦的一部分内容 在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定 在之后的每个算法实现和案例练手过程中,这一步都必不可少 同学们也不要嫌麻烦,动起 ...

  9. 百道Python面试题实现,搞定Python编程就靠它

    对于一般的机器学习求职者而言,最基础的就是掌握 Python 编程技巧,随后才是相关算法或知识点的掌握.在这篇文章中,我们将介绍一个 Python 练习题项目,它从算法练习题到机试实战题提供了众多问题 ...

随机推荐

  1. 【专章】dp基础

    知识储备:dp入门. 好了,完成了dp入门,我们可以做一些稍微不是那么裸的题了. ----------------------------------------------------------- ...

  2. libsvn_subr-1.so.0: undefined symbol: apr_atomic_xchgptr 故障解决

    源码编译安装完成之后,查看svn的安装版本会报以下错误 svn: symbol lookup error: /usr/local/subversion/lib/libsvn_subr-.so.: un ...

  3. java启动监听错误: org.springframework.web.context.ContextLoaderListener

    项目启动会报以下错误: 解决方案如下: 感谢好心人的提示“其实可能是你的jar文件没有同步发布到自己项目的lib目录中(如果你是用Maven进行构建的话) 可以试试 下面的办法 项目点击右键 点击 P ...

  4. 电脑本机ping通Linux虚拟机的方法

    一.安装VMware: 二.创建Linux虚拟机(centOS7): 三.开启虚拟机,在Linux桌面右键打开终端,输入查看虚拟机ip地址的命令:ifconfig -a    四.打开本机cmd窗口, ...

  5. win 7 系统ie浏览器升级11版本后,f12功能不可用的问题

    自从把ie8升级成11后,f12功能就不可用了.浏览器兼容模式也无法使用. 解决办法:下载windows补丁 IE11-Windows6.1-KB3008923-x64.msu 下载地址: 64位:h ...

  6. XML编程

     XML编程 XML及其语法 XML约束之DTD XML编程(CRUD---Create Read Update Delete) XML约束之Schema XML语法: XML文档的组成: 一个X ...

  7. SqlServer与Linq 无限递归目录树且输出层级

    ALTER VIEW [dbo].[view_TreeLevel] AS WITH cte AS ( SELECT a.ModuleID , a.Module_Name , a.Module_Desc ...

  8. WPF 学习笔记 路由事件

    1. 可传递的消息: WPF的UI是由布局组建和控件构成的树形结构,当这棵树上的某个节点激发出某个事件时,程序员可以选择以传统的直接事件模式让响应者来响应之,也可以让这个事件在UI组件树沿着一定的方向 ...

  9. SpringMVC拦截器Interceptor

    SpringMVC拦截器(Interceptor)实现对每一个请求处理前后进行相关的业务处理,类似与servlet中的Filter. SpringMVC 中的Interceptor 拦截请求是通过Ha ...

  10. 媲美jQuery的JS框架——AngularJS(一)

    前言 相信原生JS大家都不陌生,至于为什么说原生,是因为在JS的基础上衍生出了很多的框架.有些框架的使用非常广泛,甚至已经达到了媲美原生的地步.在之前的文章中给大家介绍了jQuery这一介绍框架.今天 ...