pick定理详解
一、概念
假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1。
二、说明
Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的面积与其边界和内部格点数之间的关系。
格点多边形的面积A(P)可以通过叉积计算出来,不过叉积计算出来的面积是实际面积的2倍;
边界上的格点B(P)可以通过计算相邻两点的横坐标之差与纵坐标之差的最大公约数的和得到;
内部的格点I(P)则通过公式得:I(P) = A(P)-B(P)/2+1计算出。
解释:
a.关于边界格点计算两点横纵坐标之差就是以两个点构成的边做坐标轴,组成的三角形(或者线)的两个之角标求gcd
b.格点多边形的面积是通过将多边形固定一个点,然后在遍历每两个点,三个点构成的三角形求面积。由于叉积可以为负,所以不必担心多加的三角形或者不在多边形内部的三角形,都会减去。
三、代码
#include <stdio.h>
#include <math.h>
#include<stdlib.h>
struct node
{
int x,y;
} point[]; int gcd(int a,int b)//gcd
{
if(b==)
return a;
return
gcd(b,a%b);
} int Area(node a,node b)//叉积
{
return a.x*b.y-a.y*b.x;
} int main()
{
int T,case1=;
scanf("%d",&T);
int n;
while(T--)
{
int a=,p=,dx,dy,i;
scanf("%d",&n);
point[].x=;
point[].y=;
for(i=; i<=n; i++)
{
scanf("%d%d",&point[i].x,&point[i].y); /*求每条边上的点*/
dx=abs(point[i].x);
dy=abs(point[i].y);
p+=gcd(dx,dy); /*用叉积求面积*/
point[i].x+=point[i-].x;
point[i].y+=point[i-].y;
a+=Area(point[i],point[i-]); }
/*最后面积要取正值*/
a=abs(a); printf("Scenario #%d:\n",case1++);
printf("%d %d %.1f\n\n",(a-p+)/,p,0.5*a);
}
return ;
}
pick定理详解的更多相关文章
- 几何:pick定理详解
一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...
- Lucas定理详解
这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系! Lucas定理解决的问题是组合数取模.数学上来说,就是求 \(\binom n m\mod p\).(p为素 ...
- POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】
Frogs' Neighborhood Time Limit: 5000MS Memory Limit: 10000K Total Submissions: 9897 Accepted: 41 ...
- (转载)--SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- redis配置详解
##redis配置详解 # Redis configuration file example. # # Note that in order to read the configuration fil ...
- Redis 配置文件 redis.conf 项目详解
Redis.conf 配置文件详解 # [Redis](http://yijiebuyi.com/category/redis.html) 配置文件 # 当配置中需要配置内存大小时,可以使用 1k, ...
- Android编译系统详解(一)
++++++++++++++++++++++++++++++++++++++++++ 本文系本站原创,欢迎转载! 转载请注明出处: http://blog.csdn.net/mr_raptor/art ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- Android编译过程详解(一)
Android编译过程详解(一) 注:本文转载自Android编译过程详解(一):http://www.cnblogs.com/mr-raptor/archive/2012/06/07/2540359 ...
随机推荐
- ⑨的完美冻青蛙(frog)
⑨的完美冻青蛙(frog) 时间限制: 1 Sec 内存限制: 128 MB 题目描述 输入 第一行是一个正整数n,表示上式中的p的个数. 接下来有n行,每一行两个正整数pi 和ei . 输出 ...
- TortoiseGit使用SSH
Windows TortoiseGit使用SSH连接 1 找到TortoiseGit自带的Puttygen工具 2.1 如果未生成过SSHKey,选择Generate(生成的过程中记得移动鼠标) 2. ...
- 基于jQuery封装的分页组件
前言: 由于项目需要实现分页效果,上jQuery插件库找了下,但是木有找到自己想要的效果,于是自己封装了个分页组件. 思路: 主要是初始化时基于原型建立的分页模板然后绑定动态事件并实现刷新DOM的分页 ...
- Entity Framework入门教程:创建实体数据模型
下图为一个已经创建好的数据库表关系 实体数据模型的创建过程 在Visual Studio项目中,右键程序集菜单,选择[添加]->[新建项],在[添加新项窗口]中选择[ADO.NET实体数据模型] ...
- windows下python连接oracle数据库
1.首先安装cx_Oracle包2.解压instantclient-basic-windows.x64-11.2.0.4.0.zip到c:\oracle3.拷贝instantclient_11_2下所 ...
- mysql show processlist
- 马踏棋盘算法递归+回溯法实现 C语言
r为矩阵的行,c为矩阵的列 将结果输出到当前目录下的results.txt. 结果将给出:1.是否存在路径使马可以按要求走遍所有的方格: 2.解的总数: 3.程序执行的时间: #include< ...
- jQuery UI 日期选择器(Datepicker)
设置JqueryUI DatePicker默认语言为中文 <!doctype html><html lang="en"> <head> < ...
- PeopleCode事件和方法只用于online界面不能用于组件接口(component interface)
在使用CI过程中,哪些方法是不能使用的.以下为PeopleBook解释的内容. 一.搜索框代码不执行:SearchInit, SearchSave, and RowSelect events 意味着使 ...
- Unity3D-游戏中的技能碰撞检测
在游戏战斗中,我们会用到各种各样的碰撞检测,来判断是否打中了目标 比如扇形检测/圆形检测 还有矩形检测,王者荣耀里后羿的大招就是一个很长的矩形碰撞体 这些在Unity3D引擎中其实都封装好了一些Col ...