机器学习实战 logistic回归 python代码
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 06 15:57:18 2017 @author: mdz
"""
'''http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=9162199&id=4223505'''
import numpy as np
#读取数据
def loadDataSet():
dataList=[];labelList=[]
fr=open('testSet.txt')
for line in fr.readlines():
lineArr=line.strip().split()
dataList.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelList.append(int(lineArr[2]))
return dataList,labelList
#引入Logistic函数
def sigmoid(inx):
return 1.0/(1+np.exp(-inx))
#梯度下降法拟合回归系数
def gradAscent(dataList,labelList):
dataMat=np.mat(dataList)
labelMat=np.mat(labelList).transpose()
m,n=np.shape(dataMat)
alpha=0.001
maxCycles=500
weights=np.ones((n,1))
for k in range (maxCycles):
h=sigmoid(dataMat*weights)
error=(labelMat-h)
weights=weights+alpha*dataMat.transpose()*error
return weights
#画图呈现分类效果
def plotBestFit(weights,dataList,labelList):
import matplotlib.pyplot as plt
weights=weights.getA()#返回narray
dataArr=np.array(dataList)
n=np.shape(dataArr)[0]
xcord1=[];ycord1=[]
xcord2=[];ycord2=[]
for i in range(n):
if int (labelList[i])==1:
xcord1.append(dataArr[i][1]);ycord1.append(dataArr[i][2])
else:
xcord2.append(dataArr[i][1]);ycord2.append(dataArr[i][2])
fig=plt.figure()
ax=fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=100,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=100,c='green',marker='o')
x=np.arange(-3.0,3.0,0.1)
y=(-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show() #脚本
'''import temp
dataList,labelList=temp.loadDataSet()
weights=temp.gradAscent(dataList,labelList)
temp.plotBestFit(weights,dataList,labelList)'''
testSet.txt
'''
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
0.850433 6.920334 1
1.347183 13.175500 0
1.176813 3.167020 1
-1.781871 9.097953 0
-0.566606 5.749003 1
0.931635 1.589505 1
-0.024205 6.151823 1
-0.036453 2.690988 1
-0.196949 0.444165 1
1.014459 5.754399 1
1.985298 3.230619 1
-1.693453 -0.557540 1
-0.576525 11.778922 0
-0.346811 -1.678730 1
-2.124484 2.672471 1
1.217916 9.597015 0
-0.733928 9.098687 0
-3.642001 -1.618087 1
0.315985 3.523953 1
1.416614 9.619232 0
-0.386323 3.989286 1
0.556921 8.294984 1
1.224863 11.587360 0
-1.347803 -2.406051 1
1.196604 4.951851 1
0.275221 9.543647 0
0.470575 9.332488 0
-1.889567 9.542662 0
-1.527893 12.150579 0
-1.185247 11.309318 0
-0.445678 3.297303 1
1.042222 6.105155 1
-0.618787 10.320986 0
1.152083 0.548467 1
0.828534 2.676045 1
-1.237728 10.549033 0
-0.683565 -2.166125 1
0.229456 5.921938 1
-0.959885 11.555336 0
0.492911 10.993324 0
0.184992 8.721488 0
-0.355715 10.325976 0
-0.397822 8.058397 0
0.824839 13.730343 0
1.507278 5.027866 1
0.099671 6.835839 1
-0.344008 10.717485 0
1.785928 7.718645 1
-0.918801 11.560217 0
-0.364009 4.747300 1
-0.841722 4.119083 1
0.490426 1.960539 1
-0.007194 9.075792 0
0.356107 12.447863 0
0.342578 12.281162 0
-0.810823 -1.466018 1
2.530777 6.476801 1
1.296683 11.607559 0
0.475487 12.040035 0
-0.783277 11.009725 0
0.074798 11.023650 0
-1.337472 0.468339 1
-0.102781 13.763651 0
-0.147324 2.874846 1
0.518389 9.887035 0
1.015399 7.571882 0
-1.658086 -0.027255 1
1.319944 2.171228 1
2.056216 5.019981 1
-0.851633 4.375691 1
-1.510047 6.061992 0
-1.076637 -3.181888 1
1.821096 10.283990 0
3.010150 8.401766 1
-1.099458 1.688274 1
-0.834872 -1.733869 1
-0.846637 3.849075 1
1.400102 12.628781 0
1.752842 5.468166 1
0.078557 0.059736 1
0.089392 -0.715300 1
1.825662 12.693808 0
0.197445 9.744638 0
0.126117 0.922311 1
-0.679797 1.220530 1
0.677983 2.556666 1
0.761349 10.693862 0
-2.168791 0.143632 1
1.388610 9.341997 0
0.317029 14.739025 0
'''
机器学习实战 logistic回归 python代码的更多相关文章
- [机器学习实战-Logistic回归]使用Logistic回归预测各种实例
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...
- 机器学习实战-logistic回归分类
基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度 ...
- 机器学习实战--logistic回归
#encoding:utf-8 from numpy import * def loadDataSet(): #加载数据 dataMat = []; labelMat = [] fr = open(' ...
- logistic回归 python代码实现
本代码参考自:https://github.com/lawlite19/MachineLearning_Python/blob/master/LogisticRegression/LogisticRe ...
- 机器学习之logistic回归算法与代码实现原理
Logistic回归算法原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10033567.html ...
- 吴裕雄--天生自然python机器学习:Logistic回归
假设现在有一些数据点,我们用 一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归.利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类 ...
- 机器学习之Logistic 回归算法
1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ( ...
- Logistic回归 python实现
Logistic回归 算法优缺点: 1.计算代价不高,易于理解和实现2.容易欠拟合,分类精度可能不高3.适用数据类型:数值型和标称型 算法思想: 其实就我的理解来说,logistic回归实际上就是加了 ...
- 机器学习5—logistic回归学习笔记
机器学习实战之logistic回归 test5.py #-*- coding:utf-8 import sys sys.path.append("logRegres.py") fr ...
随机推荐
- web前端面试总结(二)
这段时间大大小小面试确实不少,相对之前那篇被虐到体无完肤这几次确实相对来说有很大进步这里总结一下: 1.发现自己,站在个人角度我还是挺赞成出去面试的,不管你对现在的公司是否满意,当你觉得在这里已经有一 ...
- 查询sql表列名
--查询sql 查询表列名Select Name FROM SysColumns Where id=Object_Id('Tab') --查询sql数据库表列名称select name from sy ...
- @JsonIgnoreProperties忽略转换到json的属性
bean转换到json忽略指定属性 @JsonIgnoreProperties(value={"attrName"})
- ajax异步加载遮罩层特效
<!doctype html> <html> <head> <title>遮罩层(正在加载中)</title> <meta chars ...
- 前端解读Webview
作为盛行已久的开发方式,Hybrid的相关介绍已经是相当普遍了.不过看到博客园里基本上都是从android或者ios的角度来讲解的,对于h5的前端来说看起来只能是一直半解.感觉有必要从前端的角度来理解 ...
- Jenkins 配置邮件通知
jenkins 是一个开源的自动化服务器.通过Jenkins,可以通过自动化加速软件开发过程.Jenkins管理和控制各种开发的生命周期过程,包括构建,文档,测试,包,阶段,部署,静态分析等等.您可以 ...
- [jbdj]SpringMVC框架(1)快速入门
1)springmvc快速入门(传统版) 步一:创建springmvc_demo一个web应用 步二:导入springioc,springweb , springmvc相关的jar包 步三:在/WEB ...
- 自定义七天签到View
github传送车走你 https://github.com/guanhaoran/signin 因为这个View 是我很早之前写的,这些注释也是我今天刚想往github上传的时候 临时加的 有的注 ...
- 从源码的角度看Service是如何启动的
欢迎访问我的个人博客 ,原文链接:http://wensibo.top/2017/07/16/service/ ,未经允许不得转载! 七月中旬了,大家的实习有着落了吗?秋招又准备的怎么样了呢?我依旧在 ...
- Lucene的使用与重构
忽然一想好久不写博客了,工作原因个人原因,这些天一直希望一天假如36个小时该多好,但是,假如不可能. 由于近期在项目中接触了lucene,这个已经没有人维护的全文搜索框架,确实踩了不少坑,为什么用lu ...