Description

Zeit und Raum trennen dich und mich.
时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为
从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

Input

第一行两个整数 n, k。
接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。
1 ≤ n ≤ 100000, 0 ≤ k ≤ n;

Output

输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。

Sample Input

4 0
0 0 1 1

Sample Output

512
 
题解:
熟悉的题目啊...(17年省选打酱油的回忆)这个题的灵魂就是期望式子的推导
我们先来考虑不随机的情况:
我们应该从大编号往小编号(因为大编号只能按自己才能改变)一路按过去
这样模拟一遍我们就可以算出来正常情况下要按多少次,设这个次数为num
那么,如果考虑等概率瞎按的情况呢?
我们设f[i]为从"剩下i个位置亮按到到剩下i-1个位置亮"需要按的次数
那么有2种情况
1°i/n的概率按到一个应该按的灯,直接成功
2°(n-i)/n的概率按到一个不应该按的灯,这时先要按回来到i,再按到i-1
所以f[i]=i/n+(n-i)/n*(b[i+1]+b[i]+1),再给它大力化简一下,把f[i]放在一边
得到:f[i]=(f[i+1]*(n-i)+n)/i
求出来之后,我们就要统计(k,num]间num的累加之和,再乘上阶乘就完事了,ans=Σ{f[i],i∈(k,num]}*n!
如果n==k或者k>num,一上来就直接最优解,不用随机,这时ans=num*n!
在计算的时候处理上取模(逆元之类的),就可以A掉这道题了
代码见下:
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long LL;
const int N=;
const int mod=;
int n,k,a[N];
LL f[N],num;
LL quick_mod(LL di,int mi)
{
LL ret=;
while(mi)
{
if(mi&)ret=ret*di%mod;
di=di*di%mod;
mi>>=;
}
return ret;
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=n;i>=;i--)
if(a[i])
{
for(int j=;j*j<=i;j++)
if(!(i%j))
{
a[j]^=;
if(j*j!=i)a[i/j]^=;
}
num++;
}
for(LL i=n;i>=;i--)
f[i]=(f[i+]*(n-i)%mod+n)%mod*quick_mod(i,mod-)%mod;
LL t=;
if(num<k||n==k)t=num;
else
{
for(LL i=num;i>k;i--)
t=(t+f[i])%mod;
t=(t+k)%mod;
}
for(LL i=;i<=n;i++)
t=t*i%mod;
printf("%lld",t);
}

bzoj4872

 
 

[bzoj4872]分手是祝愿的更多相关文章

  1. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  2. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  3. 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP

    [BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...

  4. 【BZOJ4872】分手是祝愿

    分手是祝愿 [题目大意] 有n 个灯,每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被 ...

  5. bzoj千题计划266:bzoj4872: [六省联考2017]分手是祝愿

    http://www.lydsy.com/JudgeOnline/problem.php?id=4872 一种最优解是 从大到小灯有亮的就灭掉 最优解是唯一的,且关灯的顺序没有影响 最优解 对每个开关 ...

  6. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  7. BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望

    BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这 ...

  8. BZOJ 4872 luogu P3750 [六省联考2017]分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description ...

  9. 2017 [六省联考] T5 分手是祝愿

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 458  Solved: 299[Submit][Statu ...

随机推荐

  1. PTA自测-3 数组元素循环右移问题

    自测-3 数组元素循环右移问题  一个数组A中存有N(N>0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(M≥0)个位置,即将A中的数据由(A0A1···A​N-1​​)变换为 ...

  2. iOS APP打包分发给远程的手机测试

    APP要打包给远程的朋友或客户测试,但又不是企业账号的情况下,我们只能根据手机的udid进行描述证书的配置,再打包分发给提供了udid的手机进行安装 一.如何得到udid? 手机连接到mac电脑,打开 ...

  3. 手把手教做单点登录(SSO)系列之一:概述与示例

    本系列将由浅入深的结合示例.源码以及演示视频,手把手的带大家深入最新的单点登录SSO方案选型与架构开发实战.文末附5个满足不同单点登录场景的gif动画演示(如果看不清请在图片上右键用新窗口打开),本系 ...

  4. [UWP]了解模板化控件(8):ItemsControl

    1. 模仿ItemsControl 顾名思义,ItemsControl是展示一组数据的控件,它是UWP UI系统中最重要的控件之一,和展示单一数据的ContentControl构成了UWP UI的绝大 ...

  5. Android系统--输入系统(十二)Dispatch线程_总体框架

    Android系统--输入系统(十二)Dispatch线程_总体框架 1. Dispatch线程框架 我们知道Dispatch线程是分发之意,那么便可以引入两个问题:1. 发什么;2. 发给谁.这两个 ...

  6. IOS中的UIScrollView

    要引用UIScrollView 首先要遵循UIScrollViewDelegate协议 然后重写 //1.拖拽方法 -(void)scrollViewDidScroll:(UIScrollView * ...

  7. OC的内存管理(二)ARC

    指针: 指向内存的地址指针变量 存放地址的变量指针变量值 变量中存放的值(地址值)指针变量指向的内存单元值 内存地址指向的值1):强指针:默认的情况下,所有的指针都是强指针,关键字strong ):弱 ...

  8. 在Windows上安装MongoDB

    原文官方文档:https://docs.mongodb.org/v2.6/tutorial/install-mongodb-on-windows/ 基于版本:MongoDB 2.6 概览 通过这个示例 ...

  9. XSS攻击及预防

    跨站脚本攻击(Cross Site Scripting),为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS.恶意攻击者往Web页面里插 ...

  10. swift学习 - tableView自适应高度1(xib autoLayout)

    tableView自适应高度 效果图: 源码: class ViewController: UIViewController,UITableViewDelegate,UITableViewDataSo ...