作者:桂。

时间:2017-03-26  06:06:44

链接:http://www.cnblogs.com/xingshansi/p/6621185.html

声明:欢迎被转载,不过记得注明出处哦~


【读书笔记04】

前言

仍然是西蒙.赫金的《自适应滤波器原理》第四版第二章,首先看到无约束维纳滤波,接着到了一般约束条件的滤波,此处为约束扩展的维纳滤波,全文包括:

  1)背景介绍;

  2)广义旁瓣相消(Generalized Sidelobe Cancellation, GSC)理论推导;

  3)GSC应用——语音阵列信号增强;

内容为自己的学习记录,其中错误之处,还请各位帮忙指正!

一、背景介绍

一般约束条件的维纳滤波中,有${{\bf{w}}^H}{\bf{s}}\left( {{\theta _0}} \right) = g$的约束条件,即${{\bf{s}}^H}\left( {{\theta _0}} \right){\bf{w}} = g$.如${\bf{s}}\left( {{\theta _0}} \right)$为旋转向量时,希望在$\theta _0$处保留波束—>对应$g_1  = 1$,希望在$\theta_2$处抑制波束—>对应$g_2 = 0$,写成一般形式:

写成更一般的形式:

${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$

假设$\bf{w}$权值个数为M,在一般约束维纳滤波中可以看出:限定条件使得结果更符合预期的效果。假设C为M×L的矩阵:L个线性约束条件。对于M个变量的方程组,对应唯一解最多有M个方程,即:对于L个线性约束来讲,我们仍可以继续利用剩下的M-L个自由度进行约束,使得结果更加符合需求(比如增强某信号、抑制某信号等),这便是GSC的背景。

二、GSC理论推导

  A-理论介绍

书中的推导较为繁琐,我们可以从投影空间的角度加以理解,也就是最小二乘结果的矩阵求逆形式,给出简要说明:

对于矩阵A(N×M):

  • 如果A是满列秩(N>=M)对于符合LA=I的矩阵解为:${\bf{L}} = {\left( {{{\bf{A}}^H}{\bf{A}}} \right)^{ - 1}}{{\bf{A}}^H}$;
  • 如果A是满行秩(N<=M)对于符合AR=I的矩阵解为:${\bf{R}} = {{\bf{A}}^H}{\left( {{{\bf{A}}}{\bf{A}^H}} \right)^{ - 1}}$.

对于${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$,得出最优解:

${{\bf{w}}_q} = {\bf{C}}{\left( {{{\bf{C}}^H}{\bf{C}}} \right)^{ - 1}}{\bf{g}}$

记:

${{\bf{w}}_{re}} = {\bf{w}} - {{\bf{w}}_q}$

为了便于对余量${{\bf{w}}_{re}}$进行控制,将C扩展为:[ C | C$_{a}$ ],$\bf{C}_a$的列向量为矩阵C列向量张成空间的正交补空间的基,即:

${\bf{C}}_a^H{\bf{C}} = {\bf{0}}$

分析新的空间特性:

上式有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$,这就说明只要满足该条件,${{\bf{r}}_e} = {\bf{C}}_a^H{{\bf{w}}_{re}}$就是补空间的余量,如何保证一定有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$呢?可以将${{{\bf{w}}_{re}}}$写为:${ - {{\bf{C}}_a}{{\bf{w}}_a}}$的形式,之所以添加$-$可能是因为正交补空间可以认为C列向量空间不能表征的成分,我们通常认为这一部分为该丢弃的残差,也因为是残差:${{\bf{C}}_a}$通常被称为阻塞矩阵(取Block之意),很多书籍用$\bf{B}$表示。

重新给出推导的结果:

${\bf{w}} = {{\bf{w}}_q} - {{\bf{C}}_a}{{\bf{w}}_a}$       s.t. ${{\bf{C}}_a}{{\bf{w}}_q} = {\bf{0}}$

对应结构图为:

简化后可以认为上支、下支:

这是维纳滤波器的典型结构。

  B-阻塞矩阵的选取

阻塞矩阵这一段摘自:秦博雅《基于低复杂度自适应信号处理的波束成形技术研究》p22~23.

大致有以下几种方式:

三、阵列信号增强

学了这个GSC怎么应用呢?这里参考一篇07年adaptive beamforming(引用见最后的参考)的例子,简要说明思路,关于阻塞矩阵。

文中结构图:

即:分别利用GSC框架,通过最小互信息实现信号的分离,其中$w_a$、$C_a$即$B$都提前给定,优化$w_{a1}$、$w_{a2}$。

定义互信息:

其中,

在幅度(严格来讲是傅里叶系数幅度)为正态条件下,得到:

给出输出表达式:

并给出准则函数——相关系数的表达式:

其中,

其中相关、互相关无法得到统计信息,仍然可以基于遍历性假设:利用时间换取空间,近似求取。

文中提到引入正则化(regularization)

这个只是优化过程中的限定条件,与GSC框架关系不大,不再补充。

这里在网上找去了一个8通道(channel)的混合语音(两个说话人),利用该算法进行分析,给出主要代码:

主要代码:

MMI_define_var(Xf1,Xf2);
%initialization
W1 = [0 0 0 0.1 0 0 0.2 ];
W2 = [0 2 0 0 0.2 0 0.1 ];
[Wa1,Wa2]=MMI_EstimateWa([W1 W2]');

其中MMI_define_var定义变量:

function MMI_define_var(Xf1,Xf2)

global Wq B covX1X1 covX2X2  covX1X2  len;

Wq=[1 1 1 1 1 1 1 1]'*1/8;
B=[1 -1 0 0 0 0 0 0 ;0 1 -1 0 0 0 0 0 ;0 0 1 -1 0 0 0 0 ;0 0 0 1 -1 0 0 0 ;0 0 0 0 1 -1 0 0 ;0 0 0 0 0 1 -1 0 ;0 0 0 0 0 0 1 -1 ]'; [~,len]=size(Xf2);
XfMean1=mean(Xf1.');
XfMean2=mean(Xf2.');
for i=1:8
Xf1(i,:)=Xf1(i,:)-XfMean1(i);
Xf2(i,:)=Xf2(i,:)-XfMean2(i);
end covX1X1=Xf1*Xf1'/len;
covX2X2=Xf2*Xf2'/len;
covX1X2=Xf1*Xf2'/len;
MMI_EstimateWa实现参数估计:
function [Wa1 Wa2]=MMI_EstimateWa(W)
%obtain the Wa
ww=[real(W)' imag(W)']'; options = optimset('LargeScale','off','display','off');
[X,fval] = fminunc('MMI_real_imag_objfun',ww,options);
X_real=X(1:14);
X_imag=X(15:28);
Wa1_real=X_real(1:7);
Wa1_imag=X_imag(1:7);
Wa2_real=X_real(8:14);
Wa2_imag=X_imag(8:14); Wa1=Wa1_real+sqrt(-1)*Wa1_imag;
Wa2=Wa2_real+sqrt(-1)*Wa2_imag;
end

对应结果图:

可以听出来:虽然略有杂音,但两个说话人的声音已经实现了分离,GSC框架有效。如果不同说话人声达时间估计准确,迭代算法应用合适,效果会更好,此处主要介绍GSC应用,细节不再琢磨,有兴趣的可以探索探索。

参考:

  • K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDonough and M. WÖlfel, "Adaptive Beamforming With a Minimum Mutual Information Criterion," in IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2527-2541, Nov. 2007.
  • Simon Haykin 《Adaptive Filter Theory Fourth Edition》.

自适应滤波:维纳滤波器——GSC算法及语音增强的更多相关文章

  1. 基于Matlab的MMSE的语音增强算法的研究

    本课题隶属于学校的创新性课题研究项目.2012年就已经做完了,今天一并拿来发表.   目录: --基于谱减法的语音信号增强算法..................................... ...

  2. 自适应滤波:维纳滤波器——FIR及IIR设计

    作者:桂. 时间:2017-03-23  06:28:45 链接:http://www.cnblogs.com/xingshansi/p/6603263.html [读书笔记02] 前言 仍然是西蒙. ...

  3. AliCloudDenoise 语音增强算法:助力实时会议系统进入超清音质时代

    近些年,随着实时通信技术的发展,在线会议逐渐成为人们工作中不可或缺的重要办公工具,据不完全统计,线上会议中约有 75% 为纯语音会议,即无需开启摄像头和屏幕共享功能,此时会议中的语音质量和清晰度对线上 ...

  4. 自适应滤波:最小均方误差滤波器(LMS、NLMS)

    作者:桂. 时间:2017-04-02  08:08:31 链接:http://www.cnblogs.com/xingshansi/p/6658203.html 声明:欢迎被转载,不过记得注明出处哦 ...

  5. 昇腾CANN论文上榜CVPR,全景图像生成算法交互性再增强!

    摘要:近日,CVPR 2022放榜,基于CANN的AI论文<Interactive Image Synthesis with Panoptic Layout Generation>强势上榜 ...

  6. [论文] FRCRN:利用频率递归提升特征表征的单通道语音增强

    本文介绍了ICASSP2022 DNS Challenge第二名阿里和新加坡南阳理工大学的技术方案,该方案针对卷积循环网络对频率特征的提取高度受限于卷积编解码器(Convolutional Encod ...

  7. 自适应滤波:维纳滤波器——LCMV及MVDR实现

    作者:桂. 时间:2017-03-24  06:52:36 链接:http://www.cnblogs.com/xingshansi/p/6609317.html 声明:欢迎被转载,不过记得注明出处哦 ...

  8. EMD——EEMD——CEEMD语音增强算法基础

    首先,HHT中用到的EMD详细介绍:https://wenku.baidu.com/view/3bba7029b4daa58da0114a9a.html 本文具体参考 https://zhuanlan ...

  9. 自适应滤波——线性预测(LPC)

    作者:桂. 时间:2017-03-26  10:12:07 链接:http://www.cnblogs.com/xingshansi/p/6621914.html 声明:欢迎被转载,不过记得注明出处哦 ...

随机推荐

  1. CoreCLR源码探索(三) GC内存分配器的内部实现

    在前一篇中我讲解了new是怎么工作的, 但是却一笔跳过了内存分配相关的部分. 在这一篇中我将详细讲解GC内存分配器的内部实现. 在看这一篇之前请必须先看完微软BOTR文档中的"Garbage ...

  2. db2_errroecode

    sqlcode sqlstate  说明 000 00000 SQL语句成功完成   01xxx SQL语句成功完成,但是有警告 +012 01545 未限定的列名被解释为一个有相互关系的引用 +09 ...

  3. PHP文本处理之中文汉字字符串转换为数组

    在PHP中我们可以通过str_split 将字符串转换为数组,但是却对中文无效,下面记录一下个人将中文字符串转换为数组的方法. 用到的PHP函数 mb_strlen - 获取字符串的长度 mb_sub ...

  4. ssh无法远程登陆别的机器

    ssh无法远程登陆别的机器,提示报错: ssh: symbol lookup error: ssh: undefined symbol: EVP_aes_128_ctr 解决方法如下: 给相应配置文件 ...

  5. Python sphinx-build在Windows系统中生成Html文档

    看到前同事发布的“Markdown/reST 文档发布流水线”基于TFS.Docker.Azure等工具和平台进行文档发布的介绍说明,不得不在心中暗暗竖起大拇指.这套模式,实现了文档编写后版本管理.发 ...

  6. [Linux] PHP程序员玩转Linux系列-搭建代码开发环境

    1.PHP程序员玩转Linux系列-怎么安装使用CentOS 2.PHP程序员玩转Linux系列-lnmp环境的搭建 有些同学可能觉得我写的都是啥yum安装的,随便配置一下而已,没啥技术含量,我的目的 ...

  7. vim编译安装+lua模块

    vim编译安装+lua模块 使用背景:代码自动补全插件,需要安装lua模块 安装准备,首先下载安装vim所依赖的其它安装包,ncurses,lua,readline,vim 源码下载,编译安装 ncu ...

  8. [NOI2007]货币兑换Cash(DP+动态凸包)

    第一次打动态凸包维护dp,感觉学到了超级多的东西. 首先,set是如此的好用!!!可以通过控制一个flag来实现两种查询,维护凸包和查找斜率k 不过就是重载运算符和一些细节方面有些恶心,90行解决 后 ...

  9. BZOJ 3410: [Usaco2009 Dec]Selfish Grazing 自私的食草者(贪心)

    这= =,就是线段覆盖对了= =直接贪心就行了= = CODE: #include<cstdio>#include<iostream>#include<cstring&g ...

  10. DOM树的增查改删总结

    DOM树的增查改删总结 摘要:对HTML DOM的操作是前端JavaScript编程时必备的技能,本文是我自己对DOM树操作的总结,主要是方法的罗列,原理性的讲述较少,适合大家用于理清思路或是温习 一 ...