python版mapreduce题目实现寻找共同好友
看到一篇不知道是好好玩还是好玩玩童鞋的博客,发现一道好玩的mapreduce题目,地址http://www.cnblogs.com/songhaowan/p/7239578.html
如图
由于自己太笨,看到一大堆java代码就头晕、心慌,所以用python把这个题目研究了一下。
题目:寻找共同好友。比如A的好友中有C,B的好友中有C,那么C就是AB的共同好友。
- A:B,C,D,F,E,O
- B:A,C,E,K
- C:F,A,D,I
- D:A,E,F,L
- E:B,C,D,M,L
- F:A,B,C,D,E,O,M
- G:A,C,D,E,F
- H:A,C,D,E,O
- I:A,O
- J:B,O
- K:A,C,D
- L:D,E,F
- M:E,F,G
- O:A,H,I,J
m.py
- #-*-encoding:utf-8-*-
- #!/home/hadoop/anaconda2/bin/python
- import sys
- result = {}
- for line in sys.stdin:
- line = line.strip()
- if len(line)==0:
- continue
- key,vals = line.split(':')
- val = vals.split(',')
- result[key] = val
- if len(result)==1:
- continue
- else:
- for i in result[key]:
- for j in result:
- if i in result[j]:
- if j<key:
- print j+key,i
- elif j>key:
- print key+j,i
r.py
- #-*-encoding:utf-8-*-
- import sys
- result = {}
- for line in sys.stdin:
- line = line.strip()
- k,v = line.split(' ')
- if k in result:
- result[k].append(v)
- else:
- result[k] = [v]
- for key,val in result.items():
- print key,val
执行的命令
- hadoop jar /home/hadoop/hadoop-2.7.2/hadoop-streaming-2.7.2.jar \
- -files /home/hadoop/test/m.py,/home/hadoop/test/r.py \
- -input GTHY -output GTHYout \
- -mapper 'python m.py' -reducer 'python r.py'
执行情况
- packageJobJar: [/tmp/hadoop-unjar2310332345933071298/] [] /tmp/streamjob8006362102585628853.jar tmpDir=null
- 17/08/31 14:47:59 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.228.200:18040
- 17/08/31 14:48:00 INFO client.RMProxy: Connecting to ResourceManager at master/192.168.228.200:18040
- 17/08/31 14:48:00 INFO mapred.FileInputFormat: Total input paths to process : 1
- 17/08/31 14:48:00 INFO mapreduce.JobSubmitter: number of splits:2
- 17/08/31 14:48:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1504148710826_0003
- 17/08/31 14:48:01 INFO impl.YarnClientImpl: Submitted application application_1504148710826_0003
- 17/08/31 14:48:01 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1504148710826_0003/
- 17/08/31 14:48:01 INFO mapreduce.Job: Running job: job_1504148710826_0003
- 17/08/31 14:48:08 INFO mapreduce.Job: Job job_1504148710826_0003 running in uber mode : false
- 17/08/31 14:48:08 INFO mapreduce.Job: map 0% reduce 0%
- 17/08/31 14:48:16 INFO mapreduce.Job: map 100% reduce 0%
- 17/08/31 14:48:21 INFO mapreduce.Job: map 100% reduce 100%
- 17/08/31 14:48:21 INFO mapreduce.Job: Job job_1504148710826_0003 completed successfully
- 17/08/31 14:48:21 INFO mapreduce.Job: Counters: 49
- File System Counters
- FILE: Number of bytes read=558
- FILE: Number of bytes written=362357
- FILE: Number of read operations=0
- FILE: Number of large read operations=0
- FILE: Number of write operations=0
- HDFS: Number of bytes read=462
- HDFS: Number of bytes written=510
- HDFS: Number of read operations=9
- HDFS: Number of large read operations=0
- HDFS: Number of write operations=2
- Job Counters
- Launched map tasks=2
- Launched reduce tasks=1
- Data-local map tasks=2
- Total time spent by all maps in occupied slots (ms)=11376
- Total time spent by all reduces in occupied slots (ms)=2888
- Total time spent by all map tasks (ms)=11376
- Total time spent by all reduce tasks (ms)=2888
- Total vcore-milliseconds taken by all map tasks=11376
- Total vcore-milliseconds taken by all reduce tasks=2888
- Total megabyte-milliseconds taken by all map tasks=11649024
- Total megabyte-milliseconds taken by all reduce tasks=2957312
- Map-Reduce Framework
- Map input records=27
- Map output records=69
- Map output bytes=414
- Map output materialized bytes=564
- Input split bytes=192
- Combine input records=0
- Combine output records=0
- Reduce input groups=69
- Reduce shuffle bytes=564
- Reduce input records=69
- Reduce output records=33
- Spilled Records=138
- Shuffled Maps =2
- Failed Shuffles=0
- Merged Map outputs=2
- GC time elapsed (ms)=421
- CPU time spent (ms)=2890
- Physical memory (bytes) snapshot=709611520
- Virtual memory (bytes) snapshot=5725220864
- Total committed heap usage (bytes)=487063552
- Shuffle Errors
- BAD_ID=0
- CONNECTION=0
- IO_ERROR=0
- WRONG_LENGTH=0
- WRONG_MAP=0
- WRONG_REDUCE=0
- File Input Format Counters
- Bytes Read=270
- File Output Format Counters
- Bytes Written=510
- 17/08/31 14:48:21 INFO streaming.StreamJob: Output directory: GTHYout
最终结果
- hadoop@master:~/test$ hadoop fs -text GTHYout/part-00000
- BD ['A', 'E']
- BE ['C']
- BF ['A', 'C', 'E']
- BG ['A', 'C', 'E']
- BC ['A']
- DF ['A', 'E']
- DG ['A', 'E', 'F']
- DE ['L']
- HJ ['O']
- HK ['A', 'C', 'D']
- HI ['A', 'O']
- HO ['A']
- HL ['D', 'E']
- FG ['A', 'C', 'D', 'E']
- LM ['E', 'F']
- KO ['A']
- AC ['D', 'F']
- AB ['C', 'E']
- AE ['B', 'C', 'D']
- AD ['E', 'F']
- AG ['C', 'D', 'E', 'F']
- AF ['B', 'C', 'D', 'E', 'O']
- EG ['C', 'D']
- EF ['B', 'C', 'D', 'M']
- CG ['A', 'D', 'F']
- CF ['A', 'D']
- CE ['D']
- CD ['A', 'F']
- IK ['A']
- IJ ['O']
- IO ['A']
- HM ['E']
- KL ['D']
突然发现代码中居然一句注释都没有。果然自己还是太辣鸡,还没养成好习惯。
由于刚接触大数据不久,对java不熟悉,摸索地很慢。希望python的轻便能助我在大数据的世界探索更多。
有错的地方还请大佬多多指出~
python版mapreduce题目实现寻找共同好友的更多相关文章
- python版 mapreduce 矩阵相乘
参考张老师的mapreduce 矩阵相乘. 转载请注明:来自chybot的学习笔记http://i.cnblogs.com/EditPosts.aspx?postid=4541939 下面是我用pyt ...
- Han Xin and His Troops(扩展中国剩余定理 Python版)
Han Xin and His Troops(扩展中国剩余定理 Python版) 题目来源:2019牛客暑期多校训练营(第十场) D - Han Xin and His Troops 题意: 看标 ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- 移动端自动化测试Appium 从入门到项目实战Python版☝☝☝
移动端自动化测试Appium 从入门到项目实战Python版 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 说到APP自动化测试,Appium可是说是非常流 ...
- 数据结构:顺序表(python版)
顺序表python版的实现(部分功能未实现) #!/usr/bin/env python # -*- coding:utf-8 -*- class SeqList(object): def __ini ...
- python版恶俗古风自动生成器.py
python版恶俗古风自动生成器.py """ python版恶俗古风自动生成器.py 模仿自: http://www.jianshu.com/p/f893291674c ...
- LAMP一键安装包(Python版)
去年有出一个python整的LAMP自动安装,不过比较傻,直接调用的yum 去安装了XXX...不过这次一样有用shell..我也想如何不调用shell 来弄一个LAMP自动安装部署啥啥的..不过尼玛 ...
- 编码的秘密(python版)
编码(python版) 最近在学习python的过程中,被不同的编码搞得有点晕,于是看了前人的留下的文档,加上自己的理解,准备写下来,分享给正在为编码苦苦了挣扎的你. 编码的概念 编码就是将信息从一种 ...
- Zabbix 微信报警Python版(带监控项波动图片)
#!/usr/bin/python # -*- coding: UTF- -*- #Function: 微信报警python版(带波动图) #Environment: python import ur ...
随机推荐
- 修改tomcat编码方式
打开server.xml <Connector URIEncoding="UTF-8" connectionTimeout="20000" port=&q ...
- 为什么不需要为Python对象添加 getter 和 setter
Getter 和 setter在java中被广泛使用.一个好的java编程准则为:将所有属性设置为私有的,同时为属性写getter和setter函数以供外部使用. 这样做的好处是属性的具体实现被隐藏, ...
- JavaScript中的几种继承方式对比
转自:http://blog.csdn.net/kkkkkxiaofei/article/details/46474069 从’严格’意义上说,JavaScript并不是一门真正的面向对象语言.这种说 ...
- (转)volatile关键字
Java线程:volatile关键字 Java™ 语言包含两种内在的同步机制:同步块(或方法)和 volatile 变量.这两种机制的提出都是为了实现代码线程的安全性.其中 Volatile 变量 ...
- (转) Spring Boot MyBatis 连接数据库
最近比较忙,没来得及抽时间把MyBatis的集成发出来,其实mybatis官网在2015年11月底就已经发布了对SpringBoot集成的Release版本,Github上有代码:https://gi ...
- [BZOJ 2500] 幸福的道路
照例先贴题面(汪汪汪) 2500: 幸福的道路 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 368 Solved: 145[Submit][Sta ...
- 浅谈jQuery Pagination Ajax 分页插件的使用
插件介绍 此插件是jQuery的ajax分页插件.分页切换时无刷新也无延迟,因为是一次性加载的.如果你用到此插件作分页的时候,涉及到的数据量大,建议不要使用此插件,因为加载慢会导致用户体验不好! 插件 ...
- 【整理】01. jQuery.Form.js 用法分析
前言: 为什么使用JQuery.From.js,因为原生<form>表单没有回调函数,不过可以通过jquery-form.js这个插件来实现回调函数. jQuery.form.js是一个f ...
- 亚马逊AWS EC2云实例AMI安装LNMP环境(2)——PHP5.6
概括:这里选择亚马逊EC2的Linux AMI实例,该Linux服务器是亚马逊预配置的Linux环境,内置多个YUM源,属于亚马逊首推的稳定Linux服务器.默认登录用户名为ec2-user,执行ro ...
- Python爬虫初学(三)—— 模拟登录知乎
模拟登录知乎 这几天在研究模拟登录, 以知乎 - 与世界分享你的知识.经验和见解为例.实现过程遇到不少疑问,借鉴了知乎xchaoinfo的代码,万分感激! 知乎登录分为邮箱登录和手机登录两种方式,通过 ...