无损卡尔曼滤波UKF(3)-预测-生成Sigma点
无损卡尔曼滤波UKF(3)-预测-生成Sigma点
1 选择创建Sigma点
A 根据
已知上一个时间戳迭代出来的
后验状态 \(x_{k|k}\) 和后验协方差矩阵 \(P_{k|k}\)
他们代表当前状态的分布。
Sigma点的数量取决于状态向量的维度
\(n_{\sigma} = 2\cdot n_x + 1\)
如果以两个维度的状态向量为例。就可以生成五个sigma点。
\(X_{k|k} = [P1,P2,P3,P4,P5]\)
矩阵的每一列都代表一个Sigma点。
\(X_{k|k} = [x_{k|k},x_{k|k}+\sqrt[2]{(\lambda+n_x)P_{k|k}},x_{k|k}-\sqrt[2]{(\lambda+n_x)P_{k|k}} ]\)
关于Lambda,是一个设计的参数,一般情况下,按下面的设置,效果还不错
\(\lambda = 3 - n_x\)
求矩阵的平方根 => 找到矩阵A
\(A = \sqrt[2]{P_{k|k}} <= A^T A = P_{k|k}\)
第一个点就是状态向量的均值。
如果Lambda值大,Sigma点会距离均值点远一些。
生成Sigma点的代码(1)
/*
根据上述公式,完成生成Sigma点的函数
*/
void UKF::GenerateSigmaPoints(MatrixXd* Xsig_out) {
// 设置状态向量的维度
int n_x = 5;
// 定义传播参数
double lambda = 3 - n_x;
// 给定一个样例状态
VectorXd x = VectorXd(n_x);
x << 5.7441,
1.3800,
2.2049,
0.5015,
0.3528;
// 给定一个样例状态的协方差矩阵
MatrixXd P = MatrixXd(n_x, n_x);
P << 0.0043, -0.0013, 0.0030, -0.0022, -0.0020,
-0.0013, 0.0077, 0.0011, 0.0071, 0.0060,
0.0030, 0.0011, 0.0054, 0.0007, 0.0008,
-0.0022, 0.0071, 0.0007, 0.0098, 0.0100,
-0.0020, 0.0060, 0.0008, 0.0100, 0.0123;
// 创建Sigma点的矩阵、一列代表一个Sigma点、
MatrixXd Xsig = MatrixXd(n_x, 2 * n_x + 1);
// 计算矩阵P的平方根
MatrixXd A = P.llt().matrixL();
// 设置Sigma矩阵的第一列,一列代表一个Sigma点
Xsig.col(0) = x;
// 设置Sigma矩阵剩下的点
for (int i = 0; i < n_x; ++i) {
Xsig.col(i+1) = x + sqrt(lambda+n_x) * A.col(i);
Xsig.col(i+1+n_x) = x - sqrt(lambda+n_x) * A.col(i);
}
// 打印结果
std::cout << "Xsig = " << std::endl << Xsig << std::endl;
// 返回结果
*Xsig_out = Xsig;
}
B 扩充后创建Sigma点
考虑到噪声的影响??
- 扩充状态的平均值中添加了两个噪声值。
- 纵向加速度项和角加速度项。均值为0 ,一定方差的正态分布。
- 他们的平均值为零,因此在平均状态的Sigma点,将他们的值设置为零。
- 用零填充扩充的协方差矩阵。
- 然后,使用topLeftcorner函数设置扩充的协方差矩阵的左上块。
- 方差放入增强矩阵的右下块。 该2x2块对应于矩阵QQ。
除了这次创建了更多的sigma点,其余部分与以前完全相同。
void UKF::AugmentedSigmaPoints(MatrixXd* Xsig_out) {
// 维数
int n_x = 5;
// 扩展后维数为7
int n_aug = 7;
// Process noise standard deviation longitudinal acceleration in m/s^2
double std_a = 0.2;
// Process noise standard deviation yaw acceleration in rad/s^2
double std_yawdd = 0.2;
// 定义传播参数
double lambda = 3 - n_aug;
VectorXd x = VectorXd(n_x);
x << 5.7441,
1.3800,
2.2049,
0.5015,
0.3528;
MatrixXd P = MatrixXd(n_x, n_x);
P << 0.0043, -0.0013, 0.0030, -0.0022, -0.0020,
-0.0013, 0.0077, 0.0011, 0.0071, 0.0060,
0.0030, 0.0011, 0.0054, 0.0007, 0.0008,
-0.0022, 0.0071, 0.0007, 0.0098, 0.0100,
-0.0020, 0.0060, 0.0008, 0.0100, 0.0123;
// 创建扩充后的平均值向量
VectorXd x_aug = VectorXd(7);
// 创建扩充后的状态协方差矩阵
MatrixXd P_aug = MatrixXd(7, 7);
// 创建扩充后的Sigma矩阵
MatrixXd Xsig_aug = MatrixXd(n_aug, 2 * n_aug + 1);
// 设置扩充后的平均值向量的参数值
x_aug.head(5) = x;
x_aug(5) = 0;
x_aug(6) = 0;
// 设置扩充后的状态协方差矩阵
P_aug.fill(0.0);
P_aug.topLeftCorner(5,5) = P;
P_aug(5,5) = std_a*std_a;
P_aug(6,6) = std_yawdd*std_yawdd;
// 求P的平方根
MatrixXd L = P_aug.llt().matrixL();
// 设置Sigma矩阵其他位置的值
Xsig_aug.col(0) = x_aug;
for (int i = 0; i< n_aug; ++i) {
Xsig_aug.col(i+1) = x_aug + sqrt(lambda+n_aug) * L.col(i);
Xsig_aug.col(i+1+n_aug) = x_aug - sqrt(lambda+n_aug) * L.col(i);
}
std::cout << "Xsig_aug = " << std::endl << Xsig_aug << std::endl;
*Xsig_out = Xsig_aug;
}
无损卡尔曼滤波UKF(3)-预测-生成Sigma点的更多相关文章
- LSTM生成尼采风格文章
LSTM生成文本 github地址 使用循环神经网络生成序列文本数据.循环神经网络可以用来生成音乐.图像作品.语音.对话系统对话等等. 如何生成序列数据? 深度学习中最常见的方法是训练一个网络模型(R ...
- 生成模型(Generative Model)和 判别模型(Discriminative Model)
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以 ...
- 蛋白质组DIA深度学习之谱图预测
目录 1. 简介 2. 近几年发表的主要工具 1.DeepRT 2.Prosit 3. DIANN 4.DeepDIA 1. 简介 基于串联质谱的蛋白质组学大部分是依赖于数据库(database se ...
- 一文洞悉Python必备50种算法!资深大牛至少得掌握25种!
一.环境需求 二.怎样使用 三.本地化 3.1扩展卡尔曼滤波本地化 3.2无损卡尔曼滤波本地化 3.3粒子滤波本地化 3.4直方图滤波本地化 四.映射 4.1高斯网格映射 4.2光线投射网格映射 4. ...
- opencv3.1自带demo的介绍和运行操作。转载
opencv3.1自带demo的介绍和运行操作. 下列实验基本都试过,有些需要根据自己的电脑修改一些路径或者调试参数. 值得注意的是,控制台程序输入有时候要在图像所在的窗口输入相应的指令.我的电脑上安 ...
- 学习笔记TF060:图像语音结合,看图说话
斯坦福大学人工智能实验室李飞飞教授,实现人工智能3要素:语法(syntax).语义(semantics).推理(inference).语言.视觉.通过语法(语言语法解析.视觉三维结构解析)和语义(语言 ...
- Generative Adversarial Nets[Theory&MSE]
本文来自<deep multi-scale video prediction beyond mean square error>,时间线为2015年11月,LeCun等人的作品. 从一个视 ...
- 盖茨基金会:如何使用Python拯救生命
每年全球都要花费数十亿美元来预防疾病,减少死亡,资助预防保健及治疗的各种研发项目,以及其他的健康方案.但资金毕竟是有限的,所以一些组织,比如全球卫生资金的主要捐助者比尔&梅林达·盖茨基金会(B ...
- tensorflow的写诗代码分析【转】
本文转载自:https://dongzhixiao.github.io/2018/07/21/so-hot/ 今天周六,早晨出门吃饭,全身汗湿透.天气真的是太热了!我决定一天不出门,在屋子里面休息! ...
随机推荐
- python学习笔记(19)-切片
转自https://www.jianshu.com/p/15715d6f4dad 在利用python解决各种实际问题的过程中,经常会遇到从某个对象中抽取部分值的情况,切片操作正是专门用于完成这一操作的 ...
- Rip路由实验
以上是实验要求和实验拓扑图 (实验拓扑自己重新连线) 1.在R1-R4,4台路由器上各设置一个回环口 2.略 3.在四个路由器上配置rip(rip的基本命令) #rip 1 #version 2 #u ...
- [LC] 165. Compare Version Numbers
Compare two version numbers version1 and version2.If version1 > version2 return 1; if version1 &l ...
- Steve Lin:如何撰写一篇优秀的SIGGRAPH论文
Lin:如何撰写一篇优秀的SIGGRAPH论文" title="Steve Lin:如何撰写一篇优秀的SIGGRAPH论文"> 英文原版 PPT下载:http:// ...
- Jquery中$(document).ready() 和 JavaScript中的window.onload方法 比较
Jquery中$(document).ready()的作用类似于传统JavaScript中的window.onload方法,不过与window.onload方法还是有区别的. 1.执行时间 win ...
- GitHub下载
- hibernate lazy属性参数说明
lazy,延迟加载 Lazy的有效期:只有在session打开的时候才有效:session关闭后lazy就没效了. lazy策略可以用在: * <class>标签上:可以取值true/fa ...
- 华为VS小米 营销手段有待继续强化
营销手段有待继续强化" title="华为VS小米 营销手段有待继续强化"> 对于大多数来说,希望看到强者愈强的戏码.比如:NBA里的N场连胜.苹果帝国千秋万载一统 ...
- SWUST OJ NBA Finals(0649)
NBA Finals(0649) Time limit(ms): 1000 Memory limit(kb): 65535 Submission: 404 Accepted: 128 Descri ...
- Elays'Blog
文章导航 阴影的重要意义 阴影是光线被阻挡的结果,它能够使场景看起来真实很多,可以让观察者获得物体之间的空间位置关系.如下图所示: 图1 可以看到,有阴影的时候能够更容易的看出立方体是悬浮在地板上的. ...