CNN反向传播算法公式
网络结构(6c-2s-12c-2s):
初始化:
\begin{align}\notag
W \sim U(- \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} , \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}})
\end{align}
\begin{align}\notag
Var(W_i) = \frac{1}{n_i} ; Var(W_i) = \frac{1}{n_{i+1}} ; Var(W_i) = \frac{1}{n_i + n_{i+1}}
\end{align}
偏置 $ b $ 统一初始化为 $ 0 $ ,权重 $ W $ 设置为 $ random(-1,1)\sqrt{\frac{6}{fan_{in} + fan_{out}}} \sim U(- \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}} , \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}}) $ , $ n_j $ 表示神经网络的大小, $ fan_{in} = 输入通道数\times卷积核size $ , $ fan_{out} = 输出通道数\times卷积核size $ 。
for l = 1 : numel(net.layers) % layer
if strcmp(net.layers{l}.type, 's')
mapsize = mapsize / net.layers{l}.scale;
assert(all(floor(mapsize)==mapsize), ['Layer ' num2str(l) ' size must be integer. Actual: ' num2str(mapsize)]);
for j = 1 : inputmaps
net.layers{l}.b{j} = 0;
end
end
if strcmp(net.layers{l}.type, 'c')
mapsize = mapsize - net.layers{l}.kernelsize + 1;
fan_out = net.layers{l}.outputmaps * net.layers{l}.kernelsize ^ 2;
for j = 1 : net.layers{l}.outputmaps % output map
fan_in = inputmaps * net.layers{l}.kernelsize ^ 2;
for i = 1 : inputmaps % input map
net.layers{l}.k{i}{j} = (rand(net.layers{l}.kernelsize) - 0.5) * 2 * sqrt(6 / (fan_in + fan_out));
end
net.layers{l}.b{j} = 0;
end
inputmaps = net.layers{l}.outputmaps;
end
end
% 'onum' is the number of labels, that's why it is calculated using size(y, 1). If you have 20 labels so the output of the network will be 20 neurons.
% 'fvnum' is the number of output neurons at the last layer, the layer just before the output layer.
% 'ffb' is the biases of the output neurons.
% 'ffW' is the weights between the last layer and the output neurons. Note that the last layer is fully connected to the output layer, that's why the size of the weights is (onum * fvnum)
fvnum = prod(mapsize) * inputmaps;
onum = size(y, 1);
net.ffb = zeros(onum, 1);
net.ffW = (rand(onum, fvnum) - 0.5) * 2 * sqrt(6 / (onum + fvnum));
前向传播:
\begin{align}\notag
x_j^l = f(\sum_ {i\in M_j} x_i^{l-1} * k_{ij}^l + b_j^l)
\end{align}
% !!below can probably be handled by insane matrix operations
for j = 1 : net.layers{l}.outputmaps % for each output map
% create temp output map
z = zeros(size(net.layers{l - 1}.a{1}) - [net.layers{l}.kernelsize - 1 net.layers{l}.kernelsize - 1 0]);
for i = 1 : inputmaps % for each input map
% convolve with corresponding kernel and add to temp output map
z = z + convn(net.layers{l - 1}.a{i}, net.layers{l}.k{i}{j}, 'valid');
end
% add bias, pass through nonlinearity
net.layers{l}.a{j} = sigm(z + net.layers{l}.b{j});
end
% set number of input maps to this layers number of outputmaps
inputmaps = net.layers{l}.outputmaps;
前向传播:
\begin{align}\notag
x_j^l = f(\beta_j^l down(x_j^{l-1}) + b_j^l)
\end{align}
% downsample
for j = 1 : inputmaps
z = convn(net.layers{l - 1}.a{j}, ones(net.layers{l}.scale) / (net.layers{l}.scale ^ 2), 'valid'); % !! replace with variable
net.layers{l}.a{j} = z(1 : net.layers{l}.scale : end, 1 : net.layers{l}.scale : end, :);
end
前向传播:
% concatenate all end layer feature maps into vector
net.fv = [];
for j = 1 : numel(net.layers{n}.a)
sa = size(net.layers{n}.a{j});
net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(1) * sa(2), sa(3))];
end
% feedforward into output perceptrons
net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));
sigmoid函数求导:
\begin{align}\notag
f(x) = \frac{1}{1+e^{-x}} ; f^\prime(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f(x) \cdot [1 - f(x)]
\end{align}
对网络的最后一层输出层,计算输出值和样本值得残差:
\begin{align}\notag
\delta^n = -(y-a^n)\cdot f^\prime(z^n)
\end{align}
% error
net.e = net.o - y;
%% backprop deltas
net.od = net.e .* (net.o .* (1 - net.o)); % output delta
对于隐层 $ l = n-1,n-2,n-3,...,2 $ ,计算各节点残差:
\begin{align}\notag
\delta^l = ({(W^l)}^T \delta^{l+1}) \cdot f^\prime(z^l)
\end{align}
% concatenate all end layer feature maps into vector
net.fv = [];
for j = 1 : numel(net.layers{n}.a)
sa = size(net.layers{n}.a{j});
net.fv = [net.fv; reshape(net.layers{n}.a{j}, sa(1) * sa(2), sa(3))];
end
net.fvd = (net.ffW' * net.od); % feature vector delta
if strcmp(net.layers{n}.type, 'c') % only conv layers has sigm function
net.fvd = net.fvd .* (net.fv .* (1 - net.fv));
end
反向传播:
\begin{align}\notag
\delta_j^l = f^\prime(u_j^l)\circ conv2(\delta_j^{l+1},rot180(k_j^{l+1}),'full')
\end{align}
for i = 1 : numel(net.layers{l}.a)
z = zeros(size(net.layers{l}.a{1}));
for j = 1 : numel(net.layers{l + 1}.a)
z = z + convn(net.layers{l + 1}.d{j}, rot180(net.layers{l + 1}.k{i}{j}), 'full');
end
net.layers{l}.d{i} = z;
end
反向传播:
\begin{align}\notag
\delta_j^l = \beta_j^{l+1}(f^\prime(u_j^l) \circ up(\delta_j^{l+1}))
\end{align}
for j = 1 : numel(net.layers{l}.a)
net.layers{l}.d{j} = net.layers{l}.a{j} .* (1 - net.layers{l}.a{j}) .* (expand(net.layers{l + 1}.d{j}, [net.layers{l + 1}.scale net.layers{l + 1}.scale 1]) / net.layers{l + 1}.scale ^ 2);
end
计算最终需要的偏导数值:
\begin{align}\notag
\nabla_{W^l}J(W,b;x,y) = \delta^{l+1}(a^l)^T
\end{align}
\begin{align}\notag
\nabla_{b^l}J(W,b;x,y) = \delta^{l+1}
\end{align}
\begin{align}\notag
\nabla_{W^l}J(W,b) = [\frac{1}{m}\sum_{i=1}^m\nabla_{W^l}J(W,b;x,y)]+\lambda W_{ij}^l
\end{align}
\begin{align}\notag
\nabla_{b^l}J(W,b) = \frac{1}{m}\sum_{i=1}^m\nabla_{b^l}J(W,b;x,y)
\end{align}
\begin{align}\notag
\frac{\partial E}{\partial k_{ij}^l} = rot180(conv2(x_i^{l-1},rot180(\delta_j^l),'valid'))
\end{align}
\begin{align}\notag
\frac{\partial E}{\partial b_j} = \sum_{u,v}(\delta_j^l)_{uv}
\end{align}
for l = 2 : n
if strcmp(net.layers{l}.type, 'c')
for j = 1 : numel(net.layers{l}.a)
for i = 1 : numel(net.layers{l - 1}.a)
net.layers{l}.dk{i}{j} = convn(flipall(net.layers{l - 1}.a{i}), net.layers{l}.d{j}, 'valid') / size(net.layers{l}.d{j}, 3);
end
net.layers{l}.db{j} = sum(net.layers{l}.d{j}(:)) / size(net.layers{l}.d{j}, 3);
end
end
end
net.dffW = net.od * (net.fv)' / size(net.od, 2);
net.dffb = mean(net.od, 2);
CNN反向传播算法公式的更多相关文章
- 卷积神经网络(CNN)反向传播算法
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...
- CNN反向传播更新权值
背景 反向传播(Backpropagation)是训练神经网络最通用的方法之一,网上有许多文章尝试解释反向传播是如何工作的,但是很少有包括真实数字的例子,这篇博文尝试通过离散的数据解释它是怎样工作的. ...
- CNN反向传播算法过程
主模块 规格数据输入(加载,调格式,归一化) 定义网络结构 设置训练参数 调用初始化模块 调用训练模块 调用测试模块 画图 初始化模块 设置初始化参数(输入通道,输入尺寸) 遍历层(计算尺寸,输入输出 ...
- CNN中卷积层 池化层反向传播
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...
- CNN的反向传播
在一般的全联接神经网络中,我们通过反向传播算法计算参数的导数.BP 算法本质上可以认为是链式法则在矩阵求导上的运用.但 CNN 中的卷积操作则不再是全联接的形式,因此 CNN 的 BP 算法需要在原始 ...
- CNN压缩:为反向传播添加mask(caffe代码修改)
神经网络压缩的研究近三年十分热门,笔者查阅到相关的两篇博客,博主们非常奉献的提供了源代码,但是发发现在使用gpu训练添加mask的网络上,稍微有些不顺,特此再进行详细说明. 此文是在 基于Caffe的 ...
- 《神经网络的梯度推导与代码验证》之CNN前向和反向传播过程的代码验证
在<神经网络的梯度推导与代码验证>之CNN的前向传播和反向梯度推导 中,我们学习了CNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所 ...
- CNN卷积层基础:特征提取+卷积核+反向传播
本篇介绍卷积层的线性部分 一.与全连接层相比卷积层有什么优势? 卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集.汇聚),从附近的卷积结果中 ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
随机推荐
- CSS中 - display: inline-block
参考 https://stackoverflow.com/questions/9189810/css-display-inline-vs-inline-block An inline-block el ...
- Fluent_Python_Part2数据结构,04-text-byte,文本和字节序列
文本和字节序列 人使用文本,计算机使用字节序列 1. 大纲: 字符.码位和字节表述 bytes.bytearray和memoryview等二进制序列的独特特性 全部Unicode和陈旧字符集的编解码器 ...
- [0CTF 2016] piapiapia
一道非常有意思的反序列化漏洞的题目 花费了我不少时间理解和记忆 这里简单记录其中精髓 首先打开是一个登陆页面 dirsearch扫描到了www.zip源码备份 update.php <?php ...
- 使刚编辑的vim编辑器配置文件立即生效(实为自动生效)
简单的说,在虚拟机下安装的Centos6.3系统后,默认的是没有vim编辑器的配置文件,此时如果有必要,可以按照自己的习惯定制或配置自己的vim编辑器: 1,如果你是root权限,进入root目录下: ...
- 25 JavaScript对象原型&ES5新的对象方法
JavaScript对象原型 所有JavaScript对象都从原型继承对象和方法 日期对象继承自Date.prototype,数组继承自Array.prototype,对象构造器新建的对象Person ...
- 关于永久POE
1.传统POE 在我们的企业网络中,经常会使用交换机给IP电话或者无线AP供电,以使得其正常的工作. 正常情况下,我们都知道,普通的POE是在PSE交换机启动完成后,然后再给PD(Power Devi ...
- windows下的环境搭建配置redis
http://blog.csdn.net/spring21st/article/details/11176723
- vs code插件大全
一.HTML Snippets 超级使用且初级的H5代码片段以及提示 二.HTML CSS Support 让HTML标签上写class智能提示当前项目所支持的样式 三.Debugger for C ...
- [原]用SQL比较两张结构完全相同的表数据
前几天面试遇到一个比较有意思的问题,就是有两张结构完全相同的表A和B,但是这两张表属于不同的业务流程,经过一段时间后发现两张表的数据不能完全匹配,有可能A比B多,也可能B比A多,或者两种可能同时存在, ...
- windows下mysql 8.0.12安装步骤及基本使用教程
本文实例为大家分享了windows下mysql 8.0.12安装步骤及使用教程,供大家参考,具体内容如下 补充:mysql 已经更新到了 8.0.19,大致步骤和这个差不多,照着来就完事了. 我下载的 ...