题目

A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)– everyone involved in moving a product from supplier to customer. Starting from one root supplier, everyone on the chain buys products from one’s supplier in a price P and sell or distribute them in a price that is r% higher than P. Only the retailers will face the customers. It is assumed that each member in the supply chain has exactly one supplier except the root supplier, and there is no supply cycle. Now given a supply chain, you are supposed to tell the total sales from all the retailers.

Input Specification:

Each input file contains one test case. For each case, the first line contains three positive numbers: N (<=105), the total number of the members in the supply chain (and hence their ID’s are numbered from 0 to N-1, and the root supplier’s ID is 0); P, the unit price given by the root supplier; and r, the percentage rate of price increment for each distributor or retailer. Then N lines follow, each describes a distributor or retailer in the following format:

Ki ID[1] ID[2] … ID[Ki]

where in the i-th line, Ki is the total number of distributors or retailers who receive products from supplier i, and is then followed by the ID’s of these distributors or retailers. Kj being 0 means that the j-th member is a retailer, then instead the total amount of the product will be given afer Kj. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the total sales we can expect from all the retailers, accurate up to 1 decimal place. It is guaranteed that the number will not exceed 1010.

Sample Input:

10 1.80 1.00

3 2 3 5

1 9

1 4

1 7

0 7

2 6 1

1 8

0 9

0 4

0 3

Sample Output:

42.4

题目分析

供应商,经销商,零售商组成一棵树,每条销售渠道对应树的一条从根节点到叶结点的路径,已知每条渠道商品数,原价格,每个经销商和零售商价格增率,求总销售额

翻译:已知每个节点子节点数,及根节点到每一个子节点路径上的商品数,商品的原价p,每一个代理商品价格倍增率r%,求销售总金额

解题思路

思路 01(DFS 最优)

  1. 邻接表表示树,int cns[n]记录节点子节点数,max_h记录最大层数
  2. dfs深度优先遍历,遇到叶子节点(当前节点子节点数为0)计算当前路径销售金额,dfs函数参数price记录当前层价格

思路 02(BFS)

  1. 邻接表表示树,int cns[n]记录节点子节点数,max_h记录最大层数,int h[n]记录节点所在层数,int pro[n]记录对应层的叶子节点数
  2. bfs广度优先遍历,遇到叶子节点(当前节点子节点数为0)记录当前路径的产品数到对应层pro[h[index]]中
  3. 遍历每一层叶子结点数,统计当前层销售价,并求出总销售价

知识点

  1. bfs使用int h[n]数组记录节点的层数
  2. dfs函数参数h记录当前处理节点的层数

Code

Code 01(DFS 最优)

#include <iostream>
#include <vector>
using namespace std;
const int maxn=100000;
vector<int> nds[maxn];
int cns[maxn];//记录子结点数
double p,r,sales;
void dfs(int index,double price){
if(cns[index]==0){
//retailer
sales+=nds[index][0]*price;
return;
}
for(int i=0;i<nds[index].size();i++){
dfs(nds[index][i],price*(1+r*0.01));
}
}
int main(int argc,char * argv[]){
int n,k,cid;
scanf("%d %lf %lf",&n,&p,&r);
for(int i=0;i<n;i++){
scanf("%d",&cns[i]);
int len=cns[i]==0?1:cns[i];
for(int j=0;j<len;j++){
scanf("%d",&cid);
nds[i].push_back(cid);
}
}
dfs(0,p);
printf("%.1f",sales);
}

Code 02 (DFS)

#include <iostream>
#include <vector>
using namespace std;
const int maxn = 100010;
vector<int> nds[maxn];
int pn[maxn]; //记录经销商产品数量
double r,total;
void dfs(int index, double p) {
if(nds[index].size()==0) {
total+=p*pn[index];
return;
}
for(int i=0; i<nds[index].size(); i++)
dfs(nds[index][i], p*(1+r));
}
int main(int argc,char * argv[]) {
int n,k,cid;
double p;
scanf("%d %lf %lf", &n, &p, &r);
for(int i=0; i<n; i++) {
scanf("%d", &k);
if(k==0)scanf("%d",&pn[i]);
for(int j=0; j<k; j++) {
scanf("%d", &cid);
nds[i].push_back(cid);
}
}
r=r*0.01;
dfs(0,p);
printf("%.1f",total);
return 0;
}

Code 03(BFS)

#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int maxn=100000;
vector<int> nds[maxn];
int cns[maxn],pro[maxn],h[maxn],max_h;//cns记录子结点数,pro记录层叶子结点数
double p,r,sales;
void bfs(){
queue<int> q;
q.push(0);
while(!q.empty()){
int index = q.front();
q.pop();
max_h=max(max_h,h[index]);
if(cns[index]==0){
pro[h[index]]+=nds[index][0];
}else{
for(int i=0;i<nds[index].size();i++){
h[nds[index][i]]=h[index]+1;
q.push(nds[index][i]);
}
}
}
}
int main(int argc,char * argv[]){
int n,k,cid;
scanf("%d %lf %lf",&n,&p,&r);
for(int i=0;i<n;i++){
scanf("%d",&cns[i]);
int len=cns[i]==0?1:cns[i];
for(int j=0;j<len;j++){
scanf("%d",&cid);
nds[i].push_back(cid);
}
}
h[0]=0;
bfs();
for(int i=0;i<=max_h;i++){
sales+=pro[i]*p;
p*=(1+r*0.01);
}
printf("%.1f",sales);
return 0;
}

PAT Advanced 1079 Total Sales of Supply Chain (25) [DFS,BFS,树的遍历]的更多相关文章

  1. PAT 甲级 1079 Total Sales of Supply Chain (25 分)(简单,不建树,bfs即可)

    1079 Total Sales of Supply Chain (25 分)   A supply chain is a network of retailers(零售商), distributor ...

  2. 1079. Total Sales of Supply Chain (25)【树+搜索】——PAT (Advanced Level) Practise

    题目信息 1079. Total Sales of Supply Chain (25) 时间限制250 ms 内存限制65536 kB 代码长度限制16000 B A supply chain is ...

  3. 1079. Total Sales of Supply Chain (25)-求数的层次和叶子节点

    和下面是同类型的题目,只不过问的不一样罢了: 1090. Highest Price in Supply Chain (25)-dfs求层数 1106. Lowest Price in Supply ...

  4. PAT 甲级 1079 Total Sales of Supply Chain

    https://pintia.cn/problem-sets/994805342720868352/problems/994805388447170560 A supply chain is a ne ...

  5. 1079. Total Sales of Supply Chain (25)

    时间限制 250 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A supply chain is a network of r ...

  6. 1079. Total Sales of Supply Chain (25) -记录层的BFS改进

    题目如下: A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyon ...

  7. PAT Advanced 1106 Lowest Price in Supply Chain (25) [DFS,BFS,树的遍历]

    题目 A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)– everyone in ...

  8. PAT (Advanced Level) 1079. Total Sales of Supply Chain (25)

    树的遍历. #include<cstdio> #include<cstring> #include<cmath> #include<vector> #i ...

  9. 【PAT甲级】1079 Total Sales of Supply Chain (25 分)

    题意: 输入一个正整数N(<=1e5),表示共有N个结点,接着输入两个浮点数分别表示商品的进货价和每经过一层会增加的价格百分比.接着输入N行每行包括一个非负整数X,如果X为0则表明该结点为叶子结 ...

随机推荐

  1. spring boot引入外部jar包

    两种方法: 一:使用project-properties-java build path-Libraries 此方法的问题时不能使用mav打包. 二:写到POM里 首先在新建libs文件夹(根目录或者 ...

  2. P1006 换个格式输出整数

    这道题相较于上一题来说就简单了许多.看题. 怎么感觉这道题有点类似P1002写出这个数.流程差不多,思路大致是先求出每一位上的数,然后根据 百十个 的顺序输出结果.题目比较简单,不做赘述,贴代码 代码 ...

  3. redmine处理规范

         开发: 1.       研发人员负责更新到的状态共有三个:  “进行中”. ”已解决”. ”需要反馈”. 2.       在开始修复bug的时候,把状态更新为”进行中”,把title更新 ...

  4. 指令——touch

    一个完整的指令的标准格式: Linux通用的格式——#指令主体(空格) [选项](空格) [操作对象] 一个指令可以包含多个选项,操作对象也可以是多个. 指令:touch    作用:创建文件 语法: ...

  5. 四十七、在SAP中,把功能区块整合成一个函数,通过调用函数的办法使代码简洁明了

    一.我们查看上一次的代码,非常之凌乱,大体可以分为以下这几个区块 二.我们把最后的2个部分,用函数的方式来写,写法如下: 三.执行程序,和之前一样 四.输出结果

  6. 108-PHP类成员protected和private成员属性不能被查看数值

    <?php class mao{ //定义猫类 public $age; //定义多个成员属性 protected $weight; private $color; } $mao1=new ma ...

  7. vue学习(六)异步组件加载

    异步组件加载 首先准备-----简单的框架搭出来 <!DOCTYPE html> <html lang="zh-CN"> <head> < ...

  8. tornado和vue的模板冲突解决方法

    tornado和vue的模板冲突解决方法 Vue的插值表达式和tornado的模板都为一对花括号,可以通过修改vue的插值表达式的符号来解决这个问题,具体方法如下: var vm = new Vue( ...

  9. P1036 跟奥巴马一起编程

    转跳点:

  10. 大二暑假第一周总结--初次安装配置Hadoop

    本次配置主要使用的教程:http://dblab.xmu.edu.cn/blog/install-hadoop-in-centos/ 以下是自己在配置中的遇到的一些问题和解决方法,或者提示 一.使用虚 ...