POj3017 dp+单调队列优化
传送门
解题思路:
大力推公式:dp[i]=min(dp[k]+max(k+1,i)){k>=0&&k<i},max(j,i)记为max(a[h]){h>k&&h<=i},时间复杂度o(n^2)跑不动。考虑有什么冗余的决策可以优化,j到i的累加和记做sum(j,i),所以题目要保证sum(k+1,i)<=m(m为连续子序列和的上限)。
贪心的去想:
第一种情况如果确定max(j,i)==a[j],那么j可以作为一个可能的决策。
第二种情况如果确定max(j,i)==a[j]那么若j和i同属于一个子序列,子序列长度一定越大越好,既存在最小的k使{max(k,i)==a[j]&&sum(k,i)<=m}。至于为什么中间不能出现更优决策点,因为dp[i]>=dp[i-1]一定成立,所以越长越好。
根据上述情况发现,决策在a上具有单调性,所以可以维护一个决策点i单调递增,a[i]单调递减的单调队列。但是这跟正常的单调队列优化dp的套路不一样,队首并不一定是最优决策,所以要同时用multiset维护dp[j]+max(j+1,i)。所以最优决策是multiset的队首与单调队列的队首其中之一。注意的是单调队列要和multiset同时维护,同增同减(恋爱的酸臭味~~)
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<set>
using namespace std;
const int maxn=1e5+;
typedef long long ll;
ll dp[maxn],sum;
int s[maxn],h,t;
int num[maxn];
multiset <int> q;
int main()
{
int n;ll k;scanf("%d%lld",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&num[i]);
if(num[i]>k){
printf("-1");exit();
}
}
h=;int id=;
for(int i=;i<=n;i++){
sum+=num[i];
while(sum>k) sum-=num[id++];
if(id>i){
printf("-1");exit();
}
while(h<=t&&num[s[t]]<num[i]){
if(h<t)
q.erase(dp[s[t-]]+num[s[t]]);
t--;
}
s[++t]=i;
if(h<t){
q.insert(dp[s[t-]]+num[i]);
}
while(h<=t&&s[h]<id){
if(h<t)
q.erase(dp[s[h]]+num[s[h+]]);
h++;
}
dp[i]=dp[id-]+num[s[h]];
ll t=*q.begin();
if(h<t&&t<dp[i])
dp[i]=t;
}
printf("%lld\n",dp[n]);
}
cout和printf混用这题tle了(没用输入输出优化),求解
看了一下网上的还有下面这种算法不知道是不是数据水了,可以hack可惜没有
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+;
typedef long long ll;
ll dp[maxn],sum[maxn];
int s[maxn],h,t;
int num[maxn];
int main()
{
int n;ll k;scanf("%d%lld",&n,&k);
for(int i=;i<=n;i++){
scanf("%d",&num[i]);sum[i]=sum[i-]+num[i];
if(num[i]>k){
cout<<"-1"<<endl;return ;
}
}
h=;
for(int i=;i<=n;i++){
int id=upper_bound(sum+,sum++n,sum[i]-k)-sum;
while(sum[i]-sum[id-]>k) id++;
//cout<<id<<endl;
while(h<=t&&num[s[t]]<=num[i]) t--;
s[++t]=i;
while(h<=t&&s[h]<id) h++;
dp[i]=dp[id-]+num[s[h]];
for(int j=h+;j<=t;j++)
dp[i]=min(dp[i],dp[s[j-]]+num[s[j]]);
}
cout<<dp[n]<<endl;
}
这用一个递减的排列很明显可以卡成o(n^2)~~~~
POj3017 dp+单调队列优化的更多相关文章
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
- Codeforces 1077F2 Pictures with Kittens (hard version)(DP+单调队列优化)
题目链接:Pictures with Kittens (hard version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:数据量5000, ...
- P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)
题目链接:传送门 题目: 题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( ...
- Codeforces 445A Boredom(DP+单调队列优化)
题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...
- bzoj 1855 dp + 单调队列优化
思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- 股票交易(DP+单调队列优化)
题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...
- Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)
题意: 已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值. 细节: 没有细节???感觉没有??? 分析: 听说有两种方法!!! 好吧实际上是等价的只是看 ...
- 【简洁易懂】CF372C Watching Fireworks is Fun dp + 单调队列优化 dp优化 ACM codeforces
题目大意 一条街道有$n$个区域. 从左到右编号为$1$到$n$. 相邻区域之间的距离为$1$. 在节日期间,有$m$次烟花要燃放. 第$i$次烟花燃放区域为$a_i$ ,幸福属性为$b_i$,时间为 ...
随机推荐
- [译]ABP框架v2.3.0已经发布!
在新冠病毒的日子里,我们发布了ABP框架v2.3, 这篇文章将说明本次发布新增内容和过去的两周我们做了什么. 关于新冠病毒和我们的团队 关于冠状病毒的状况我们很难过.在Volosoft的团队,我们有不 ...
- C# 获取系统所有字体
获取已安装的所有字体列表 System.Drawing.FontFamily StringBuilder str = ); InstalledFontCollection fonts = new In ...
- 《Python学习手册 第五版》 -第16章 函数基础
前面的章节讲解的是一些基础数据类型.基本语句使用和一些文档查看的内容,这些都是一些基础,其实还谈不上入门,只有了解了函数,才算入门 函数是编程里面使用最多的也是最基本的程序结构, 本章重点内容 1.函 ...
- Python3之turtle的基本用法#Python学习01#
一.turtle基本语法 1.导入turtle 模块import turtle 2.显示箭头turtle.showturtle() 3.写字符串turtle.write("因小米" ...
- 一些Nmap NSE脚本推荐
前言 Nmap是一款强大的开源扫描工具.同时Nmap提供了强大的脚本引擎(Nmap Scripting Engine),支持通过Lua脚本语言来扩展Nmap的功能,在Nmap的发行版中已经包含了数百个 ...
- hdu3973 AC's String 线段树+字符串hash
题目链接:http://icpc.njust.edu.cn/Problem/Hdu/3973/ 题意是:给出一个模式串,再给出一些串组成一个集合,操作分为两种,一种是替换模式串中的一个字符,还有一种是 ...
- 题解 CF1304E 【1-Trees and Queries】
前言 这场比赛,在最后 \(5\) 分钟,我想到了这道题的 \(Idea\),但是,没有打完,比赛就结束了. 正文 题目意思 这道题目的意思就是说,一棵树上每次给 \(x\) 和 \(y\) 节点连 ...
- springboot整合dubbo+zookeeper最新详细
引入 最近和小伙伴做一个比赛,处于开发阶段,因为涉及的服务比较多,且服务需要分开部署在不同的服务器上,讨论之后,打算采用分布式来做,之前学习springboot的时候,部分章节涉及到了springbo ...
- RMQ(倍增法求ST)
解决什么问题:区间查询最值 倍增思想:每次得出结果的范围呈2的幂次增长,有人说相当于二分,目前我觉得相当于线段树的查找. 具体理解看代码: /*倍增法求ST*/ #include<math.h& ...
- coding++:Java 中Model 与 实体的区别
model的字段>entity的字段,并且model的字段属性可以与entity不一致,model是用于前端页面数据展示的,而entity则是与数据库进行交互做存储用途. 举个例子: 比如在存储 ...