代码来源:https://github.com/eriklindernoren/ML-From-Scratch

卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html

激活函数的实现(sigmoid、softmax、tanh、relu、leakyrelu、elu、selu、softplus):https://www.cnblogs.com/xiximayou/p/12713081.html

损失函数定义(均方误差、交叉熵损失):https://www.cnblogs.com/xiximayou/p/12713198.html

优化器的实现(SGD、Nesterov、Adagrad、Adadelta、RMSprop、Adam):https://www.cnblogs.com/xiximayou/p/12713594.html

卷积层反向传播过程:https://www.cnblogs.com/xiximayou/p/12713930.html

全连接层实现:https://www.cnblogs.com/xiximayou/p/12720017.html

class BatchNormalization(Layer):
"""Batch normalization.
"""
def __init__(self, momentum=0.99):
self.momentum = momentum
self.trainable = True
self.eps = 0.01
self.running_mean = None
self.running_var = None def initialize(self, optimizer):
# Initialize the parameters
self.gamma = np.ones(self.input_shape)
self.beta = np.zeros(self.input_shape)
# parameter optimizers
self.gamma_opt = copy.copy(optimizer)
self.beta_opt = copy.copy(optimizer) def parameters(self):
return np.prod(self.gamma.shape) + np.prod(self.beta.shape) def forward_pass(self, X, training=True): # Initialize running mean and variance if first run
if self.running_mean is None:
self.running_mean = np.mean(X, axis=0)
self.running_var = np.var(X, axis=0) if training and self.trainable:
mean = np.mean(X, axis=0)
var = np.var(X, axis=0)
self.running_mean = self.momentum * self.running_mean + (1 - self.momentum) * mean
self.running_var = self.momentum * self.running_var + (1 - self.momentum) * var
else:
mean = self.running_mean
var = self.running_var # Statistics saved for backward pass
self.X_centered = X - mean
self.stddev_inv = 1 / np.sqrt(var + self.eps) X_norm = self.X_centered * self.stddev_inv
output = self.gamma * X_norm + self.beta return output def backward_pass(self, accum_grad): # Save parameters used during the forward pass
gamma = self.gamma # If the layer is trainable the parameters are updated
if self.trainable:
X_norm = self.X_centered * self.stddev_inv
grad_gamma = np.sum(accum_grad * X_norm, axis=0)
grad_beta = np.sum(accum_grad, axis=0) self.gamma = self.gamma_opt.update(self.gamma, grad_gamma)
self.beta = self.beta_opt.update(self.beta, grad_beta) batch_size = accum_grad.shape[0] # The gradient of the loss with respect to the layer inputs (use weights and statistics from forward pass)
accum_grad = (1 / batch_size) * gamma * self.stddev_inv * (
batch_size * accum_grad
- np.sum(accum_grad, axis=0)
- self.X_centered * self.stddev_inv**2 * np.sum(accum_grad * self.X_centered, axis=0)
) return accum_grad def output_shape(self):
return self.input_shape

批量归一化的过程:

前向传播的时候按照公式进行就可以了。需要关注的是BN层反向传播的过程。

accm_grad是上一层传到本层的梯度。反向传播过程:

【python实现卷积神经网络】批量归一化层实现的更多相关文章

  1. 【python实现卷积神经网络】padding2D层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  2. 【python实现卷积神经网络】Flatten层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  3. 【python实现卷积神经网络】Dropout层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  4. 【python实现卷积神经网络】激活层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  5. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 【python实现卷积神经网络】上采样层upSampling2D实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  7. 【python实现卷积神经网络】卷积层Conv2D实现(带stride、padding)

    关于卷积操作是如何进行的就不必多说了,结合代码一步一步来看卷积层是怎么实现的. 代码来源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下 ...

  8. 【python实现卷积神经网络】开始训练

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  9. 【python实现卷积神经网络】定义训练和测试过程

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  10. 基于Python的卷积神经网络和特征提取

    基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测 ...

随机推荐

  1. Python3学习之路~10.3 论事件驱动与异步IO

    论事件驱动----详见:https://www.cnblogs.com/alex3714/articles/5248247.html Select\Poll\Epoll异步IO----详见:http: ...

  2. Multi-batch TMT reveals false positives, batch effects and missing values(解读人:胡丹丹)

    文献名:Multi-batch TMT reveals false positives, batch effects and missing values (多批次TMT定量方法中对假阳性率,批次效应 ...

  3. 【python 数据结构】相同某个字段值的所有数据(整理成数组包字典的形式)

    class MonitoredKeywordMore(APIView): def post(self, request): try: # 设置原生命令并且请求数据 parents_asin = str ...

  4. [A*,启发式搜索] [SCOI2005] 骑士精神

    链接:https://ac.nowcoder.com/acm/problem/20247来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言52428 ...

  5. Arcgis中制作热力图

    摘要 使用核函数根据点或折线 (polyline) 要素计算每单位面积的量值以将各个点或折线 (polyline) 拟合为光滑锥状表面. 插图

  6. MATLAB 一维随机变量及其概率分布

    1.两点分布 clc clear a=rand(1,10); for ii=1:10 if a(ii)<0.2 a(ii)=0; else a(ii)=1; end end a x=0的概率为0 ...

  7. Sublime Text 2 Install Package Debug

    本文转载自CSDN空间freshlover的博客<Sublime Text 无法使用Package Control或插件安装失败的解决方法>,转载请注明出处,谢谢! Sublime Tex ...

  8. Servlet---request内置对象

    Request 对象: 问题: 浏览器发起请求到服务器,会遵循HTTP协议将请求数据发送给服务器. 那么服务器接受到请求的数据改怎么存储呢?不但要存,而且要保证完成性. 解决: 使用对象进行存储,服务 ...

  9. 操作系统-IO与显示器

    1. 让外设工作起来 只要给相应的控制器中的寄存器发一个指令 向设备控制器的寄存器写不就可以了吗? 需要查寄存器地址.内容的格式和语义.操作系统需要给用户提供一个简单视图---文件视图,这样方便 总的 ...

  10. Django-on_delete

    一.外键的删除 关于on_delete的总结 1.常见的使用方式(设置为null) class BookModel(models.Model): """ 书籍表 &quo ...