1.改造二叉树

【题目描述】

小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树。通常子结点被称作“左孩子”和“右孩子”。二叉树被用作二叉搜索树和二叉堆。随后他又和他人讨论起了二叉搜索树。

什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树。设key[p]表示结点p上的数值。对于其中的每个结点p,若其存在左孩子lch,则key[p]>key[lch];若其存在右孩子rch,则key[p]<key[rch];注意,本题中的二叉搜索树应满足对于所有结点,其左子树中的key小于当前结点的key,其右子树中的key大于当前结点的key。

小Y与他人讨论的内容则是,现在给定一棵二叉树,可以任意修改结点的数值。修改一个结点的数值算作一次修改,且这个结点不能再被修改。若要将其变成一棵二叉搜索树,且任意时刻结点的数值必须是整数(可以是负整数或0),所要的最少修改次数。

相信这一定难不倒你!请帮助小Y解决这个问题吧。

【输入格式】

第一行一个正整数n表示二叉树结点数。结点从1~n进行编号。

第二行n个正整数用空格分隔开,第i个数ai表示结点i的原始数值。

此后n - 1行每行两个非负整数fa, ch,第i + 2行描述结点i + 1的父亲编号fa,以及父子关系ch,(ch = 0 表示i + 1为左儿子,ch = 1表示i + 1为右儿子)。

结点1一定是二叉树的根。

【输出格式】

仅一行包含一个整数,表示最少的修改次数。

【样例输入】

3

2 2 2

1 0

1 1

【样例输出】

2

【数据范围】

20 % :n <= 10 , ai <= 100.

40 % :n <= 100 , ai <= 200

60 % :n <= 2000 .

100 % :n <= 10 ^ 5 ,  ai < 2 ^ 31.

对树的知识了解的人可能一下就可以反应过来,我们针对一个小的分支看,是左边<父节点<右边。。。。然后这个顺序想到了啥

对,就是中序遍历,中序遍历:左中右。。。。然后题中也说到,整个左子树要小于父节点

然后我们就能够推出来,改造二叉树的中序遍历是严格上升的

然后题就转换成了求中序遍历,然后求最长严格上升子序列。。。。

求最长严格上升子序列可以进行优化,因为是严格上升,所以第i个至少比第i-1个大1,然后我们可以对这个序列里的数减去他的序数,就是求最长不下降子序列

这题还有一个需要注意的地方是,数据范围太大,不适合普通的LIS做法,要进行优化。。。

优化方式是开个数组f[i]记录满足条件的第i个数最小是f[i]

我们画图理解

然后我们唯一要处理就是图中第一个6和4 对f的影响

这里我们可以用二分的方式,因为是上升子序列,所以我们只需要二分找到第一个比当前小的数,然后用当前数取代之前那个数

图中就是,当i=4时,二分找到第一个比他小的i=1,a[i]=1的数,然后发现a[2]<a[4]就用2取代这个位置的6,f[2]=6,9的取代同理

这样做就大大优化了时间,不会超时

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<queue>
#define maxn 100005
using namespace std; struct node{
int l,r,val;
}tree[maxn]; int n,a[maxn],f[maxn],ans,tot; void dfs(int pos){//中序遍历左中右
if(pos<)return;
dfs(tree[pos].l);
tot++;
a[tot]=tree[pos].val-tot;//求最长不下降子序列
dfs(tree[pos].r);
} int find(int l,int r,int x)
{
while(l<=r){
int mid=(l+r)/;
if(f[mid]<=x)l=mid+;
else r=mid-;
}
return l;
} int main()
{
freopen("binary.in","r",stdin);
freopen("binary.out","w",stdout);
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&tree[i].val);
}int fa,so;
for(int i=;i<=n;i++){
scanf("%d%d",&fa,&so);
if(so==)tree[fa].l=i;
else tree[fa].r=i;
}
dfs();
f[]=a[];ans=;
for (int i=;i<=n;i++)//最长不降字串一类的信方式
{
if (a[i]>=f[ans])
f[++ans]=a[i];
else
f[find(,ans,a[i])]=a[i];//当合法字串长度一样,尽量用小的那一个
}
printf("%d\n",n-ans);
/*
6
4 6 5 1 9 6
1 0
1 1
2 0
2 1
3 1
*/
}

总结:在遇到和树相关的题时,如果允许,可以从前中后遍历去查询问题。。。

   最长上升或不降这一类的题,可以进行优化,优化方式如文。。。

   还有一点就是可以合理运用容斥原理,我们这是求最少不合法的个数,然后可以转换成总数减去合法的最大个数

[noip模拟]改造二叉树<LIS>的更多相关文章

  1. 改造二叉树 (长乐一中模拟赛day2T1)

    1.改造二叉树 [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随 ...

  2. 10.26最后的模拟DAY2 改造二叉树[中序遍历+严格递增的最长不下降子序列]

    改造二叉树 [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他 ...

  3. CH Round #49 - Streaming #4 (NOIP模拟赛Day2)

    A.二叉树的的根 题目:http://www.contesthunter.org/contest/CH%20Round%20%2349%20-%20Streaming%20%234%20(NOIP 模 ...

  4. Nescafe #29 NOIP模拟赛

    Nescafe #29 NOIP模拟赛 不知道这种题发出来算不算侵权...毕竟有的题在$bz$上是权限题,但是在$vijos$似乎又有原题...如果这算是侵权的话请联系我,我会尽快删除,谢谢~ 今天开 ...

  5. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  6. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  7. 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护

    线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...

  8. 2014-10-31 NOIP模拟赛

        10.30 NOIp  模拟赛   时间 空间 测试点 评测方式 挖掘机(dig.*) 1s 256M 10 传统 黑红树(brtree.*) 2s 256M 10 传统 藏宝图(treas. ...

  9. 20190908 NOIP 模拟40

    考试过程: 刚看完题,发现T1是个类lis 问题,但要求$O(nlogn)$,应该是个数据结构优化dp,T2应该是个数据结构,T3是个字符串?没有匹配,不会是后缀数组吧,这是NOIP模拟啊,可能是个d ...

随机推荐

  1. 7-44 jmu-python-区间数之和 (10 分)

    输入一个区间,计算里面能被3整除或被5整除的数和. 输入格式: 每行输入一个数据,代表区间左界和右界.区间包含左界和右界.数据必须是整数. 输出格式: 满足条件数和. 输入样例: 2 10 输出样例: ...

  2. Ado.net01

    ------------恢复内容开始------------ 1.ExcuteReader using System; using System.Data.SqlClient; using Syste ...

  3. tab 切换下划线跟随实现

    HTML 结构如下: <ul> <li class="active">不可思议的CSS</li> <li>导航栏</li> ...

  4. 容器内init进程方案

    背景 进程标识符 (PID) 是Linux 内核为每个进程提供的唯一标识符.熟悉docker的同学都知道, 所有的进程 PID都属于某一个PID namespaces, 也就是说容器具有一组自己的 P ...

  5. .Net Core 为 x86 和 x64 程序集编写 AnyCPU 包装

    前言 这几天研究了一下 vJoy 这个虚拟游戏手柄驱动,感觉挺好玩的.但是使用时发现一个问题,C# SDK 中的程序集被分为 x86 和 x64 两个版本,如果直接在 AnyCPU 平台编译运行就有隐 ...

  6. JavaScript的自调用函数

    函数表达式可以 "自调用". 自调用表达式会自动调用. 如果表达式后面紧跟 () ,则会自动调用. 不能自调用声明的函数. 通过添加括号,来说明它是一个函数表达式: <scr ...

  7. C语言程序设计(二) C数据类型

    第二章 C数据类型 八进制整数由数字0开头,后跟0~7的数字序列组成. 十六进制整数由数字0加字母x(或X)开头,后跟0~9,a~f(或A~F)的数字序列组成. 整型常量: 默认的int型定义为有符号 ...

  8. ML-Agents(二)创建一个学习环境

    ML-Agents(二)创建一个学习环境 一.前言 上一节我们讲了如何配置ML-Agents环境,这一节我们创建一个示例,主要利用Reinforcement Learning(强化学习). 如上图,本 ...

  9. [POI2017]bzoj4726 Sadota?

    题目描述 离线题库请 题目描述 某个公司有\(n\)个人, 上下级关系构成了一个有根树.其中有个人是叛徒(这个人不知道是谁).对于一个人, 如果他 下属(直接或者间接, 不包括他自己)中叛徒占的比例超 ...

  10. C++ 【静态成员】static修饰的成员

    首先,我们先通过字面意思来理解... 成员:成员变量.成员函数. static  修饰成员变量,还有修饰成员函数. static  声明为静态的,称为静态成员.不管这个类创建了多少个对象,静态成员只有 ...