前言

其实这道题的关键就是在于预处理,其方法类似于 合唱队形

正文

求最大子段和

要想求出双子序列最大和,首先我们要会求出最大子段和

最大子段和的求值方法很简单

定义 \(f_i\) 为以第 \(i\) 个数结尾的最大子段和

#include <bits/stdc++.h>
using namespace std;
int f[1000010],a[1000010];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
f[1]=a[1];
for(int i=2;i<=n;i++)f[i]=max(f[i-1]+a[i],a[i]);
int ans=f[1];
for(int i=2;i<=n;i++)ans=max(ans,f[i]);
cout<<ans;
return 0;
}

求双子序列最大和

那么我们现在可以去求双子序列最大和

怎么求,思路是



如果你去枚举中间的数,然后去算左边的最大子段,再算出右边的最大子段,加起来,用打擂法,求出最大值,你会 \(TLE\),毕竟\(n<=10^{6}\)

那怎么办?我们可以预处理

我们可以用 \(O(n)\) 的时间计算到前 \(1\) 个数的最大子段,

我们可以用 \(O(n)\) 的时间计算到后 \(i\) 个数的最大子段

像这样

cin>>n;
for(int i=1;i<=n;i++)cin>>x[i];
f[1]=x[1];
for(int i=2;i<=n;i++)f[i]=max(f[i-1]+x[i],x[i]);//算最大子段
for(int i=2;i<=n;i++)f[i]=max(f[i-1],f[i]);//更新成最大值
l[n]=x[n];
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1]+x[i],x[i]);//算最大子段
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1],l[i]);//更新成最大值

这里 \(f_i\) 表示前 \(i\) 个数中的最大字段和

这里 \(l_i\) 表示后 \(i\) 个数中的最大字段和

然后,用 \(O(n)\) 的时间去枚举中间的数,打擂法求出双子序列最大和

上代码:

#include<bits/stdc++.h>
using namespace std;
long long x[1000010],f[1000010],l[1000010];
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>x[i];
f[1]=x[1];
for(int i=2;i<=n;i++)f[i]=max(f[i-1]+x[i],x[i]);//算最大子段
for(int i=2;i<=n;i++)f[i]=max(f[i-1],f[i]);//算最大子段
l[n]=x[n];
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1]+x[i],x[i]);//算最大子段
for(int i=n-1;i>=1;i--)l[i]=max(l[i+1],l[i]);//算最大子段
long long ans=f[1]+l[3];
for(int i=3;i<n;i++)ans=max(ans,f[i-1]+l[i+1]);//枚举中间数
cout<<ans;
return 0;
}

后记

这种预处理的方法可以优化我们的时间复杂度,避免重复计算,使我们的程序跑得更快!

题解 P2642 【双子序列最大和】的更多相关文章

  1. 【dp】P2642 双子序列最大和

    题目描述 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小长度为1,并且 ...

  2. 简单DP【p2642】双子序列最大和

    Description 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小 ...

  3. [Luogu 2642] 双子序列最大和

    Description 给定一个长度为n的整数序列,要求从中选出两个连续子序列,使得这两个连续子序列的序列和之和最大,最终只需输出最大和.一个连续子序列的和为该子序列中所有数之和.每个连续子序列的最小 ...

  4. 【题解】SDOI2015序列统计

    [题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...

  5. 【题解】FBI序列

    题目描述 两伙外星人策划在未来的XXXX年侵略地球,侵略前自然要交换信息咯,现在,作为全球保卫队队长,你截获了外星人用来交换信息的一段仅由“F”,“B”,“I”,“O”组成的序列.为了保卫地球和平,为 ...

  6. 题解【bzoj1251 序列终结者】

    Description 维护三个操作:区间加,区间翻转,区间求最大值.\(n \leq 50000\) Solution fhqtreap大法好! 模板题(我是不会告诉你这篇题解是用来存个代码的 Co ...

  7. 【题解】HNOI2016序列

    也想了有半天,没有做出来……实际上做法确实也是十分精妙的.这里推荐一个blog,个人认为这位博主讲得挺好了:Sengxian's Blog; 感觉启示是:首先要加强对莫队算法 & ST表的熟练 ...

  8. [题解] LuoguP3321 [SDOI2015]序列统计

    感觉这个题挺妙的...... 考虑最暴力的\(dp\),令\(f[i][j]\)表示生成大小为\(i\)的序列,积为\(j\)的方案数,这样做是\(O(nm)\)的. 转移就是 \[ f[i+1][j ...

  9. 【笔记】入门DP(Ⅱ)

    0X00 P1433 吃奶酪 状压 \(DP\),把经过的点压缩成01串.若第 \(i\) 位为 \(0\) 表示未到达,为 \(1\) 则表示已到达. 用 \(f[i][j]\) 表示以 \(i\) ...

随机推荐

  1. js数组中重复的对象去重

    var arr = [{ "name": "ZYTX", "age": "Y13xG_4wQnOWK1QwJLgg11d0pS4h ...

  2. 纯css3配合vue实现微信语音播放效果

    前言 每次写点东西都扯两句-0-,这几天一半精力放在移动端,一半维护之前的项目.书也少看了,不过还好依旧保持一颗学习的心.对于css3我是之前有专门整理过的,因此对于原理之前也算了解.今天是项目中遇到 ...

  3. 开始使用Github

     Gather ye rosebuds while ye may 我自己也是刚开始使用github没几天,写得不好我就写自己常用的吧 2015年9月20日下午3:19更新知乎上这个答案写得好多了

  4. Hi3518_SDK

    第一章 Hi3518_SDK_Vx.x.x.x版本升级操作说明 如果您是首次安装本SDK,请直接参看第2章. 第二章 首次安装SDK 1.Hi3518 SDK包位置 在"Hi3518_V10 ...

  5. Gnome Ubuntu16安装Nvidia显卡396驱动,CUDA9.2以及cudnn9.2

    深度学习环境配置,安装Nvidia显卡驱动,CUDA以及cudnn OS:ubuntu 16.04;driver: nvidia 396;CUDA: 9.2cudnn: 9.2 卸载原有Nvidia驱 ...

  6. 【WPF学习】第五十章 故事板

    正如上一章介绍,WPF动画通过一组动画类(Animation类)表示.使用少数几个熟悉设置相关信息,如开始值.结束值以及持续时间.这显然使得它们非常适合于XAML.不是很清晰的时:如何为特定的事件和属 ...

  7. CSS(0)CSS的引入方式

    CSS (cascading  style  sheet)  层叠样式表 css引入的三种方式: 1.行间样式 <!--在body内写入--> <div></div> ...

  8. YAML语法使用,JSR303数据校验

    YAML YAML是 "YAML Ain't a Markup Language" (YAML不是一种置标语言)的递归缩写 # yaml配置 server: prot: YAML语 ...

  9. Echarts轻松入门,内附踩坑秘籍

    首先介绍一下我们的主角ECharts ECharts,一个纯 Javascript 的图表库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Fir ...

  10. 【渗透】node.js经典问题

    1.循环问题 当循环调用 require() 时,一个模块可能在未完成执行时被返回.例如以下情况:a.js: exports.done = false; const b = require('./b. ...