HMM-前向后向算法(附python实现)
基本要素
状态 \(N\)个
状态序列 \(S = s_1,s_2,...\)
观测序列 \(O=O_1,O_2,...\)
\(\lambda(A,B,\pi)\)
- 状态转移概率 \(A = \{a_{ij}\}\)
- 发射概率 \(B = \{b_{ik}\}\)
- 初始概率分布 \(\pi = \{\pi_i\}\)
观测序列生成过程
- 初始状态
- 选择观测
- 状态转移
- 返回step2
HMM三大问题
- 概率计算问题(评估问题)
给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),计算 \(P(O|\lambda)\),即计算观测序列的概率
- 解码问题
给定观测序列 \(O=O_1O_2...O_T\),模型 \(\lambda (A,B,\pi)\),找到对应的状态序列 \(S\)
- 学习问题
给定观测序列 \(O=O_1O_2...O_T\),找到模型参数 \(\lambda (A,B,\pi)\),以最大化 \(P(O|\lambda)\),
概率计算问题
给定模型 \(\lambda\) 和观测序列 \(O\),如何计算\(P(O| \lambda)\)?
暴力枚举每一个可能的状态序列 \(S\)
对每一个给定的状态序列
\[P(O|S,\lambda) = \prod^T_{t=1} P(O_t|s_t,\lambda) =\prod^T_{t=1} b_{s_tO_t}
\]一个状态序列的产生概率
\[P(S|\lambda) = P(s_1)\prod^T_{t=2}P(s_t|s_{t-1})=\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}
\]联合概率
\[P(O,S|\lambda) = P(S|\lambda)P(O|S,\lambda) =\pi_1\prod^T_{t=2}a_{s_{t-1}s_t}\prod^T_{t=1} b_{s_tO_t}
\]考虑所有的状态序列
\[P(O|\lambda)=\sum_S\pi_1b_{s_1O_1}\prod^T_{t=2}a_{s_{t-1}s_t}b_{s_tO_t}
\]
\(O\) 可能由任意一个状态得到,所以需要将每个状态的可能性相加。
这样做什么问题?时间复杂度高达 \(O(2TN^T)\)。每个序列需要计算 \(2T\) 次,一共 \(N^T\) 个序列。
前向算法
在时刻 \(t\),状态为 \(i\) 时,前面的时刻观测到 \(O_1,O_2, ..., O_t\) 的概率,记为 \(\alpha _i(t)\) :
\]
当 \(t=1\) 时,输出为 \(O_1\),假设有三个状态,\(O_1\) 可能是任意一个状态发出,即
\]
当 \(t=2\) 时,输出为 \(O_1O_2\) ,\(O_2\) 可能由任一个状态发出,同时产生 \(O_2\) 对应的状态可以由 \(t=1\) 时刻任意一个状态转移得到。假设 \(O_2\) 由状态 1
发出,如下图
=\bold{\alpha_1(1)}a_{11}b_1(O_2)+\bold{\alpha_2(1)}a_{21}b_1(O_2)+\bold{\alpha_3(1)}a_{31}b_1(O_2) = \bold{\alpha_1(2)}
\]
同理可得 \(\alpha_2(2),\alpha_3(2)\)
=\bold{\alpha_1(1)}a_{12}b_2(O_2)+\bold{\alpha_2(1)}a_{22}b_2(O_2)+\bold{\alpha_3(1)}a_{32}b_2(O_2)
\\
\bold{\alpha_3(2)} = P(O_1O_2,s_2=q_3|\lambda)
=\bold{\alpha_1(1)}a_{13}b_3(O_2)+\bold{\alpha_2(1)}a_{23}b_3(O_2)+\bold{\alpha_3(1)}a_{33}b_3(O_2)
\]
所以
= \alpha_1(2)+\alpha_2(2)+\alpha_3(2)
\]
所以前向算法过程如下:
step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)
step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)
step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i(T)\)
相比暴力法,时间复杂度降低了吗?
当前时刻有 \(N\) 个状态,每个状态可能由前一时刻 \(N\) 个状态中的任意一个转移得到,所以单个时刻的时间复杂度为 \(O(N^2)\),总时间复杂度为 \(O(TN^2)\)
代码实现
例子:
假设从三个 袋子 {1,2,3}
中 取出 4 个球 O={red,white,red,white}
,模型参数\(\lambda = (A,B,\pi)\) 如下,计算序列O
出现的概率
#状态 1 2 3
A = [[0.5,0.2,0.3],
[0.3,0.5,0.2],
[0.2,0.3,0.5]]
pi = [0.2,0.4,0.4]
# red white
B = [[0.5,0.5],
[0.4,0.6],
[0.7,0.3]]
step1:初始化 \(\alpha_i(1)= \pi_i*b_i(O_1)\)
step2:计算 \(\alpha_i(t) = (\sum^{N}_{j=1} \alpha_j(t-1)a_{ji})b_i(O_{t})\)
step3:\(P(O|\lambda) = \sum^N_{i=1}\alpha_i( T)\)
#前向算法
#前向算法
def hmm_forward(A,B,pi,O):
T = len(O)
N = len(A[0])
#step1 初始化
alpha = [[0]*T for _ in range(N)]
for i in range(N):
alpha[i][0] = pi[i]*B[i][O[0]]
#step2 计算alpha(t)
for t in range(1,T):
for i in range(N):
temp = 0
for j in range(N):
temp += alpha[j][t-1]*A[j][i]
alpha[i][t] = temp*B[i][O[t]]
#step3
proba = 0
for i in range(N):
proba += alpha[i][-1]
return proba,alpha
A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_forward(A,B,pi,O) #结果为 0.06009
结果
后向算法
在时刻 \(t\),状态为 \(i\) 时,观测到 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率,记为 \(\beta _i(t)\) :
\]
当 \(t=T\) 时,由于 \(T\) 时刻之后为空,没有观测,所以 \(\beta_i(t)=1\)
当 \(t = T-1\) 时,观测 \(O_T\) ,\(O_T\) 可能由任意一个状态产生
\]
当 \(t=1\) 时,观测为 \(O_{2},O_{3}, ..., O_T\)
\beta_1(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=1,\lambda)\\
&=a_{11}b_1(O_2)\beta_1(2)+a_{12}b_2(O_2)\beta_2(2)+a_{13}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_2(1)
&= P(O_{2},O_{3}, ..., O_T|s_1=2,\lambda)\\
&=a_{21}b_1(O_2)\beta_1(2)+a_{22}b_2(O_2)\beta_2(2)+a_{23}b_3(O_2)\beta_3(2)
\\
\quad
\\
\beta_3(1)
&=P(O_{2},O_{3}, ..., O_T|s_1=3,\lambda)\\
&=a_{31}b_1(O_2)\beta_1(2)+a_{32}b_2(O_2)\beta_2(2)+a_{33}b_3(O_2)\beta_3(2)
\end{aligned}
\]
所以
\]
后向算法过程如下:
step1:初始化 \(\beta_i(T)=1\)
step2:计算 \(\beta_i(t) = \sum^N_{j=1}a_{ij}b_j(O_{t+1})\beta_j(t+1)\)
step3:\(P(O|\lambda) = \sum^N_{i=1}\pi_ib_i(O_1)\beta_i(1)\)
- 时间复杂度 \(O(N^2T)\)
代码实现
还是上面的例子
#后向算法
def hmm_backward(A,B,pi,O):
T = len(O)
N = len(A[0])
#step1 初始化
beta = [[0]*T for _ in range(N)]
for i in range(N):
beta[i][-1] = 1
#step2 计算beta(t)
for t in reversed(range(T-1)):
for i in range(N):
for j in range(N):
beta[i][t] += A[i][j]*B[j][O[t+1]]*beta[j][t+1]
#step3
proba = 0
for i in range(N):
proba += pi[i]*B[i][O[0]]*beta[i][0]
return proba,beta
A = [[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]
B = [[0.5,0.5],[0.4,0.6],[0.7,0.3]]
pi = [0.2,0.4,0.4]
O = [0,1,0,1]
hmm_backward(A,B,pi,O) #结果为 0.06009
结果
前向-后向算法
回顾前向、后向变量:
- \(a_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_1,O_2, ..., O_t\) 的概率
- \(\beta_i(t)\) 时刻 \(t\),状态为 \(i\) ,观测序列为 \(O_{t+1},O_{t+2}, ..., O_T\) 的概率
P(O,s_t=i|\lambda)
&= P(O_1,O_2, ..., O_T,s_t=i|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i,O_{t+1},O_{t+2}, ..., O_T|\lambda)\\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T|O_1,O_2, ..., O_t,s_t=i,\lambda) \\
&= P(O_1,O_2, ..., O_t,s_t=i|\lambda)*P(O_{t+1},O_{t+2}, ..., O_T,s_t=i|\lambda)\\
&= a_i(t)*\beta_i(t)
\end{aligned}
\]
即在给定的状态序列中,\(t\) 时刻状态为 \(i\) 的概率。
使用前后向算法可以计算隐状态,记 \(\gamma_i(t) = P(s_t=i|O,\lambda)\) 表示时刻 \(t\) 位于隐状态 \(i\) 的概率
\]
\gamma_{i}(t)
&=P\left(s_{t}={i} | O, \lambda\right)=\frac{P\left(s_{t}={i}, O | \lambda\right)}{P(O | \lambda)} \\
&=\frac{\alpha_{i}(t) \beta_{i}(t)}{P(O | \lambda)}=\frac{\alpha_{i}(t) \beta_{i}(t)}{\sum_{i=1}^{N} \alpha_{i}(t) \beta_{i}(t)}
\end{aligned}
\]
references:
[1] https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
[2]https://www.cnblogs.com/fulcra/p/11065474.html
[3] https://www.cnblogs.com/sjjsxl/p/6285629.html
[4] https://blog.csdn.net/xueyingxue001/article/details/52396494
HMM-前向后向算法(附python实现)的更多相关文章
- HMM 前向后向算法(转)
最近研究NLP颇感兴趣,但由于比较懒,所以只好找来网上别人的比较好的博客,备份一下,也方便自己以后方便查找(其实,一般是不会再回过头来看的,嘿嘿 -_-!!) 代码自己重新写了一遍,所以就不把原文代码 ...
- HMM 自学教程(七)前向后向算法
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 条件随机场CRF(二) 前向后向算法评估标记序列概率
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在条件随机场CRF(一)中我们总结了CRF的模 ...
- 《统计学习方法》P179页10.22前向后向算法公式推导
- 隐马尔可夫(HMM)、前/后向算法、Viterbi算法
HMM的模型 图1 如上图所示,白色那一行描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,蓝紫色那一行是各个状态生成可观测的随机序列 话说,上面也是个贝叶斯网络,而贝叶斯网络中有这么一种,如下 ...
- HMM-前向后向算法理解与实现(python)
目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...
- HMM-前向后向算法(附代码)
目录 基本要素 HMM三大问题 概率计算问题 前向算法 后向算法 前向-后向算法 基本要素 状态 \(N\)个 状态序列 \(S = s_1,s_2,...\) 观测序列 \(O=O_1,O_2,.. ...
- 隐马尔可夫模型HMM与维特比Veterbi算法(一)
隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔 ...
随机推荐
- stand up meeting 12/21/2015
part 组员 工作 工作耗时/h 明日计划 工作耗时/h UI 冯晓云 完成PDF UI主页面的页面切换功能,待完善 4 完善 ...
- CLDAPReflectionDDoS(CLDAP反射放大攻击)
CLDAP Reflection DDoS 0x01 LDAP: 全称为Lightweight Directory Access Protocol,即轻量目录访问协议,基于X.500标准: 目录服务就 ...
- C# 基础知识系列- 12 任务和多线程
0. 前言 照例一份前言,在介绍任务和多线程之前,先介绍一下异步和同步的概念.我们之间介绍的知识点都是在同步执行,所谓的同步就是一行代码一行代码的执行,就像是我们日常乘坐地铁通过安检通道一样,想象我们 ...
- iview使用之怎样通过render函数在table组件表头添加图标及判断多个状态
在实际项目开发中,我们经常会用到各种各样的表格,比如在表格中填加下拉菜单,按钮,图标及可以根据状态显示对应文字等等,因为这段时间一直在做后台管理系统,所以表格用的就比较多,当然UI组件库我用的是ivi ...
- php的echo 和 return的区别
来源:https://blog.csdn.net/ljfphp/article/details/76718635 项目中碰到的问题,本来是想在控制器直接return $xml的($xml是一段xml格 ...
- TP5 JSON对象数组转换为普通数组
来源于:https://blog.csdn.net/lingchen__/article/details/67671047 使用TP5框架做项目时,对于数据的查询返回的都是对象,虽然也可以当做普通的数 ...
- 替换字符串sql
update [表名] set 字段名 = replace(与前面一样的字段名,'原本内容','想要替换成什么') UPDATE `zjl_III_hei_zlj_20151111`.`ctrl_ne ...
- Selenium常见报错问题(2)- 解决和分析StaleElementReferenceException异常
如果你在跑selenium脚本时,需要某些异常不知道怎么解决时,可以看看这一系列的文章,看看有没有你需要的答案 https://www.cnblogs.com/poloyy/category/1749 ...
- [Qt] Release模式下产生调试信息
分两步,设置Qt配置文件,设置VS. https://blog.csdn.net/itas109/article/details/83652387 F:\Qt\Qt5.7.1\5.7\msvc2015 ...
- opencv-4-成像系统与Mat图像颜色空间
opencv-4-成像系统与Mat图像颜色空间 opencvc++qtmat 目标 知道 opencv 处理图像数据的格式 介绍 mat 基础内容 知道 BGR 颜色 显示 颜色转换 BGR 到 灰度 ...