最优化之Robust PCA
最近加了一个QQ群,接触了点新的东西,包括稀疏近似,低秩近似和压缩感知等。Robust PCA中既包含了低秩,又包含了稀疏,于是以其为切入点,做了如下笔记。笔记中有的公式有比较详细的推导,希望对读者有用;有的公式则直接列写出了,待以后有新的理解再更新。由于初学,加之水平有限,文中会有疏漏错误之处,希望大家批评指正赐教。
本文推导了矩阵绝对值和范数及核范数的次梯度;求解了带正则项(和惩罚项)的绝对值,矩阵绝对值和范数及矩阵核范数的最优化问题;介绍了Robust PCA的几种算法,包括了迭代阈值算法,加速近端梯度算法(Accelerated Proximal Gradient;APG),增广Lagrange乘子法(Augmented Lagrange Multiplier;ALM)和交替方向法(alternating direction methods;ADM),注意这部分笔记内容并不成熟。
更新记录
本文持续更新!如文中有错误,或你对本文有疑问或建议,欢迎留言或发邮件至quarrying#qq.com!
2015年12月29日,更新博文,添加L0范数最优化问题求解,修正一些错误。
参考
http://math.stackexchange.com/questions/701062/derivative-of-nuclear-norm
http://math.stackexchange.com/questions/1142540/proof-that-nuclear-norm-is-convex
[2010 SIAM] A Singular Value Thresholding Algorithm for Matrix Completion
[2009 SIAM] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
[2008 Candes] Exact Matrix Completion Via Convex Optimization
[2009 ACM] Robust Principal Component Analysis
[2009] Sparse and low-rank matrix decomposition via alternating direction methods
[2009] The augmented Lagrange multiplier method for exact recovery of a corrupted low-rank matrices.
[2009] Fast algorithms for recovering a corrupted low-rank matrix
[2009] An Accelerated Proximal Gradient Algorithm for Nuclear Norm Regularized Least Squares problems
正文
最优化之Robust PCA的更多相关文章
- Robust PCA via Outlier Pursuit
目录 引 主要结果 定理1 定理2 理论证明 构造Oracle Problem 算法 Xu H, Caramanis C, Sanghavi S, et al. Robust PCA via Outl ...
- 透过表象看本质!?之二——除了最小p乘,还有PCA
如图1所示,最小p乘法求得是,而真实值到拟合曲线的距离为.那么,对应的是什么样的数据分析呢? 图1 最小p乘法的使用的误差是.真实值到拟合曲线的距离为 假如存在拟合曲线,设直线方程为.真实值到该曲线的 ...
- Rubost PCA 优化
Rubost PCA 优化 2017-09-03 13:08:08 YongqiangGao 阅读数 2284更多 分类专栏: 背景建模 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA ...
- PCA降维笔记
PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一 ...
- paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择
机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...
- L0、L1与L2范数、核范数(转)
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大 ...
- 矩阵分解(rank decomposition)文章代码汇总
矩阵分解(rank decomposition)文章代码汇总 矩阵分解(rank decomposition) 本文收集了现有矩阵分解的几乎所有算法和应用,原文链接:https://sites.goo ...
- Matrix Factorization, Algorithms, Applications, and Avaliable packages
矩阵分解 来源:http://www.cvchina.info/2011/09/05/matrix-factorization-jungle/ 美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应 ...
- 机器学习中的规则化范数(L0, L1, L2, 核范数)
目录: 一.L0,L1范数 二.L2范数 三.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问 ...
随机推荐
- Java本地的项目,怎么可以让别人通过外网访问-内网穿透
2019独角兽企业重金招聘Python工程师标准>>> 一.点击链接 https://natapp.cn/ 注册个免费的账户 NATAPP官网 二.登陆进去以后查看authtoken ...
- Centos 6.5升级gcc : 源码安装 + rpm安装
1. 前言 采用Centos 6.5默认的gcc版本为4.4.7,不支持c++ 11,需要升级: 首先想到用yum命令:执行yum update gcc-c++或yum update g++ 显示没有 ...
- Codeforces Round #622 (Div. 2) 1313 C1
C1. Skyscrapers (easy version) time limit per test1 second memory limit per test512 megabytes inputs ...
- [bzoj5329] P4606 [SDOI2018]战略游戏
P4606 [SDOI2018]战略游戏:广义圆方树 其实会了圆方树就不难,达不到黑,最多算个紫 那个转换到圆方树上以后的处理方法,画画图就能看出来,所以做图论题一定要多画图,并把图画清楚点啊!! 但 ...
- Jenkins 介绍
持续集成: 持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成.每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证 ...
- LeetCode 56,57,60,连刷三题不费劲
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题的第34篇文章,刚好接下来的题目比较简单,很多和之前的做法类似.所以我们今天出一个合集,一口气做完接下来的57.5 ...
- 支付宝小程序云开发(Serverless)
支付宝小程序云开发(Serverless) 博客说明 文章所涉及的资料来自互联网整理和个人总结,意在于个人学习和经验汇总,如有什么地方侵权,请联系本人删除,谢谢! 一.在支付宝账号里面开通小程序云服务 ...
- README.md编写
一.标题写法: 第一种方法: 1.在文本下面加上 等于号 = ,那么上方的文本就变成了大标题.等于号的个数无限制,但一定要大于0个哦.. 2.在文本下面加上 下划线 - ,那么上方的文本就变成了中标题 ...
- hive元数据报错?试了很多方法都没辙?也许你漏了这一步
进入hiveCLI后,输入show databases; 显示 FAILED: SemanticException org.apache.hadoop.hive.ql.metadata.HiveExc ...
- java知识点查漏补缺-- 2020512
jvm: jdbc statement: JDBC statement中的PReparedStatement的占位符对应着即将与之对应当值,并且一个占位符只能对应一个值,如果能对应多个就会引起混淆.s ...