Picnic Planning
Time Limit: 5000MS   Memory Limit: 10000K
Total Submissions: 10642   Accepted: 3862

Description

The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible ability to cram an unlimited number of themselves into even the smallest vehicle. During the off-season, the brothers like to get together for an Annual Contortionists Meeting at a local park. However, the brothers are not only tight with regard to cramped quarters, but with money as well, so they try to find the way to get everyone to the party which minimizes the number of miles put on everyone's cars (thus saving gas, wear and tear, etc.). To this end they are willing to cram themselves into as few cars as necessary to minimize the total number of miles put on all their cars together. This often results in many brothers driving to one brother's house, leaving all but one car there and piling into the remaining one. There is a constraint at the park, however: the parking lot at the picnic site can only hold a limited number of cars, so that must be factored into the overall miserly calculation. Also, due to an entrance fee to the park, once any brother's car arrives at the park it is there to stay; he will not drop off his passengers and then leave to pick up other brothers. Now for your average circus clan, solving this problem is a challenge, so it is left to you to write a program to solve their milage minimization problem.

Input

Input will consist of one problem instance. The first line will contain a single integer n indicating the number of highway connections between brothers or between brothers and the park. The next n lines will contain one connection per line, of the form name1 name2 dist, where name1 and name2 are either the names of two brothers or the word Park and a brother's name (in either order), and dist is the integer distance between them. These roads will all be 2-way roads, and dist will always be positive.The maximum number of brothers will be 20 and the maximumlength of any name will be 10 characters.Following these n lines will be one final line containing an integer s which specifies the number of cars which can fit in the parking lot of the picnic site. You may assume that there is a path from every brother's house to the park and that a solution exists for each problem instance.

Output

Output should consist of one line of the form
Total miles driven: xxx
where xxx is the total number of miles driven by all the brothers' cars.

Sample Input

10
Alphonzo Bernardo 32
Alphonzo Park 57
Alphonzo Eduardo 43
Bernardo Park 19
Bernardo Clemenzi 82
Clemenzi Park 65
Clemenzi Herb 90
Clemenzi Eduardo 109
Park Herb 24
Herb Eduardo 79
3

Sample Output

Total miles driven: 183

以下内容均为转载(代码风格也没改,就是这么懒=_=)http://www.cnblogs.com/jackge/archive/2013/05/12/3073669.html 膜

#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<climits>
#include<queue>

using namespace std;

const int N=30;

struct node{
    int v,cap;
    node(){}
    node(int _v,int _cap):v(_v),cap(_cap){}
    bool operator < (const node &a) const{
        return a.cap<cap;
    }
};

map<string,int> mp;
int g[N][N],dis[N],clo[N],pre[N],fst[N],max_side[N];
int n,m,k;

int Prim(int src,int id){
    priority_queue<node> q;
    while(!q.empty())
        q.pop();
    dis[src]=0;
    q.push(node(src,0));
    int ans=0;
    while(!q.empty()){
        node cur=q.top();
        q.pop();
        int u=cur.v;
        if(!clo[u]){
            clo[u]=id;
            ans+=dis[u];
            for(int i=1;i<n;i++)
                if(!clo[i] && g[u][i]!=0 && dis[i]>g[u][i]){ //满足松弛条件
                    pre[i]=u;
                    dis[i]=g[u][i];
                    q.push(node(i,dis[i]));
                }
        }
    }
    return ans;
}

void update(int cur,int last,int maxside){  //也是一个dfs过程,直到搜回到起点,同时完成了max_side[]更新
    max_side[cur]=maxside>g[cur][last]?maxside:g[cur][last];
    for(int i=1;i<n;i++)
        if(i!=last && g[cur][i]!=0 && (pre[cur]==i || pre[i]==cur))
            update(i,cur,max_side[cur]);
}

void Solve(){
    int i,res,cnt;
    for(i=0;i<n;i++){
        dis[i]=INT_MAX;
        clo[i]=pre[i]=fst[i]=0;
    }
    res=0,cnt=1;    //除去根节点后,图中的连通子图个数,即最小生成树个数
    for(i=1;i<n;i++)
        if(!clo[i])
            res+=Prim(i,cnt++);
    for(i=1;i<n;i++){   //找到每个生成树和 Park 最近的点使之和 Park 相连
        int id=clo[i];
        if(g[0][i]!=0 && (!fst[id] || g[0][i]<g[0][fst[id]]))
            fst[id]=i;
    }
    for(i=1;i<cnt;i++){ //把m个生成树上和根节点相连的边加入res,得到关于Park的最小m度生成树
        res+=g[0][fst[i]];
        g[0][fst[i]]=g[fst[i]][0]=0;    //之所以用邻接阵就是因为删除边很方便
        update(fst[i],0,0);
    }

/*
    添删操作:将根节点和生成树中一个点相连,会产生一个环,将这个环上(除刚添的那条边外)权值最大
    的边删去.由于每次操作都会给总权值带来影响 d=max_side[tmp]-mat[0][tmp],我们需要得到最小生
    成树,所以我们就要求 d 尽量大
    */

k=k-cnt+1;  //接下来重复操作,直到度数满足条件
    while(k--){
        int tmp=0;
        for(i=1;i<n;i++)    //找 d 值最大的点(就是说完成添删操作后可以使总边权减小的值最大)
            if(g[0][i]!=0 && (tmp==0 || max_side[tmp]-g[0][tmp]<max_side[i]-g[0][i]))
                tmp=i;
        if(max_side[tmp]<=g[0][tmp])    //总权值无法再减小
            break;
        res=res-max_side[tmp]+g[0][tmp];
        g[0][tmp]=g[tmp][0]=0;
        int p=0;
        for(i=tmp;pre[i]!=0;i=pre[i])
            if(p==0 || g[p][pre[p]]<g[i][pre[i]])
                p=i;
        pre[p]=0;
        update(tmp,0,0);
    }
    printf("Total miles driven: %d\n",res);
}

int main(){

//freopen("input.txt","r",stdin);
    char s1[20],s2[20];
    int cap;
    while(~scanf("%d",&m)){
        mp["Park"]=0;
        n=1;
        memset(g,0,sizeof(g));
        while(m--){
            scanf("%s %s %d",s1,s2,&cap);
            if(!mp.count(s1))
                mp[s1]=n++;
            if(!mp.count(s2))
                mp[s2]=n++;
            int u=mp[s1],v=mp[s2];
            if(!g[u][v] || g[u][v]>cap)
                g[u][v]=g[v][u]=cap;
        }
        scanf("%d",&k);
        Solve();
    }
    return 0;
}

由于一直觉得上一份有点错误 ,所以又找了一份,发现这两个思想一样啊 =_=还是觉得有点错误,先挖坑以后来填

#include <cstdio>
#include <iostream>
#include <string>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstring>
#include <vector>
#include <map>
using namespace std;

const int inf = 0x3f3f3f3f;
const int N = 1111;
int n,k;
map<string,int> name;
vector<string> vec;
int g[N][N],vis[N];
int li[N][N],lowcost[N],pre[N];
int kk,ans;
struct node{
 int u,v,len;
 node(){}
 node(int _u,int _v,int _del):u(_u),v(_v),len(_del){}
}del[N];
void prim(int u){
 for(int i = 1;i < n;i++){
  lowcost[i] = g[u][i];
  pre[i] = u;
 }
 vis[u] = true;
 while(true){
  int pr = -1 , mind = inf;
  for(int i = 1;i < n;i++)
   if(!vis[i] && lowcost[i] < mind){
    mind = lowcost[i];
    pr = i;
   }
  if(pr == -1) break;
  ans += mind;
  li[pre[pr]][pr] = li[pr][pre[pr]] = 1;
  if(g[0][kk] > g[0][pr]) kk = pr;
  vis[pr] = true;
  for(int i = 1;i < n;i++)
   if(!vis[i] && lowcost[i] > g[pr][i])
    lowcost[i] = g[pr][i] , pre[i] = pr;
 }
}
void dfs(int u,int fa,int del_u,int del_v){
 for(int i = 1;i < n;i++){
  if(li[u][i] && i!=fa){
   if(fa == -1 || g[del_u][del_v] < g[u][i]){
    del[i] = node(u,i,g[u][i]);
    dfs(i,u,u,i);
   }else{
    del[i] = node(del_u,del_v,g[del_u][del_v]);
    dfs(i,u,del_u,del_v);
   }
  }
 }
}
void solve(){
 memset(vis,0,sizeof(vis));
 memset(li,0,sizeof(li));
 ans = 0;
 vis[0] = true;
 for(int i = 1;i < n;i++){
  if(vis[i]) continue;
  kk = i;
  k--;
  prim(i);
  li[0][kk] = li[kk][0] = 1;
  ans += g[0][kk];
  dfs(kk,-1,-1,-1);
 }
 memset(vis,0,sizeof(vis));
 while(k--){
  int c = 0 , todel = -1;
  for(int i = 1;i < n;i++){
   if(li[0][i] || g[0][i] == inf) continue;
   if(c > g[0][i] - del[i].len){
    c = g[0][i] - del[i].len;
    todel = i;
   }
  }
  if(c == 0) break;
  ans += c;
  li[0][todel] = li[todel][0] = 1;
  li[del[todel].u][del[todel].v]=li[del[todel].v][del[todel].u] = 0;
  dfs(todel, 0 , -1,-1);
 }
 printf("Total miles driven: %d\n",ans);
}
int getNum(const string &s){
 if(name.count(s) > 0)
  return name[s];
 vec.push_back(s);
 return name[s] = vec.size()-1;
}
void init(){
 memset(g,0x3f,sizeof(g));
 name.clear();
 vec.clear();
 getNum("Park");
 string su,sv;
 for(int i = 0,w;i < n;i++){
  cin >> su >> sv;
  cin >> w;
  int u = getNum(su) ,v = getNum(sv);
  if(g[u][v] > w)
   g[u][v] = g[v][u] = w;
 }
 n = vec.size();
 scanf("%d",&k);
}
int main(){
 while(scanf("%d",&n)!=EOF){
  init();
  solve();
 }
 return 0;
}

限制某个顶点度数的最小生成树 poj1639的更多相关文章

  1. POJ-1639 Picnic Planning 度数限制最小生成树

    解法参考的论文:https://wenku.baidu.com/view/8abefb175f0e7cd1842536aa.html 觉得网上的代码好像都是用邻接矩阵来实现的,觉得可能数据量大了会比较 ...

  2. POJ1639顶点度限制最小生成树

    题目:http://poj.org/problem?id=1639 见汪汀的<最小生成树问题的拓展>. 大体是先忽略与根节点相连的边,做一遍kruscal,得到几个连通块和一个根节点: 然 ...

  3. UVA1537 Picnic Planning(思维+最小生成树)

    将1号点从图中去掉过后,图会形成几个连通块,那么我们首先可以在这些连通块内部求最小生成树. 假设有\(tot\)个连通块,那么我们会从1号点至少选\(tot\)个出边,使得图连通.这时我们贪心地选择最 ...

  4. 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind

    最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...

  5. HDU 1301 Jungle Roads (最小生成树,基础题,模版解释)——同 poj 1251 Jungle Roads

    双向边,基础题,最小生成树   题目 同题目     #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include<stri ...

  6. [数据结构]最小生成树算法Prim和Kruskal算法

    最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总 ...

  7. Prim算法和Kruskal算法求最小生成树

    Prim算法 连通分量是指图的一个子图,子图中任意两个顶点之间都是可达的.最小生成树是连通图的一个连通分量,且所有边的权值和最小. 最小生成树中,一个顶点最多与两个顶点邻接:若连通图有n个顶点,则最小 ...

  8. 图解最小生成树 - 普里姆(Prim)算法

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

  9. 最小生成树之Kruskal算法和Prim算法

    依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...

随机推荐

  1. 使用ExecutorService来停止线程服务

    文章目录 使用shutdown 使用shutdownNow 使用ExecutorService来停止线程服务 之前的文章中我们提到了ExecutorService可以使用shutdown和shutdo ...

  2. 都2020年了,这5个java IDE神器你还不知道?

    TIOBE的4月份编程语言排行榜出来了,java还是稳坐第一位,java最新的版本也到了13,一直以来java凭借其企业级应用的优势和大量的框架级应用俘获了大量的粉丝和企业客户. 谈到开发者,java ...

  3. 深拷贝、浅拷贝与Cloneable接口

    深拷贝与浅拷贝 浅拷贝 public class Student implements Cloneable{ Integer a; Integer b; @Override protected Obj ...

  4. Next.js 7发布,构建速度提升40%

    Next.js团队发布了其开源React框架的7版本.该版本的Next.js主要是改善整体的开发体验,包括启动速度提升57%.开发时的构建速度提升40%.改进错误报告和WebAssembly支持. \ ...

  5. 聚集表(clustered table)data page中的数据行可以无序

    误区 一直以为只要一个表含有聚集索引,那么在data page中的数据行是排序的.比如原来data page中有1.2.4.5.6这样四条记录,那么我要插入3这条记录,应该是先将456三条记录往后移, ...

  6. pv(PageView)的解释

    http://blog.sina.com.cn/s/blog_5007d1b10100moka.html 本文转自hblxp32151CTO博客,原文链接:http://blog.51cto.com/ ...

  7. [USACO1.3]虫洞wormhole

    题目描述 农夫约翰爱好在周末进行高能物理实验的结果却适得其反,导致N个虫洞在农场上(2<=N<=12,n是偶数),每个在农场二维地图的一个不同点. 根据他的计算,约翰知道他的虫洞将形成 N ...

  8. CF786B Legacy(线段树优化建边)

    模板题CF786B Legacy 先说算法 如果需要有n个点需要建图 给m个需要建边的信息,从单点(或区间内所有点)向一区间所有点连边 如果暴力建图复杂度\(mn^2\) 以单点连向区间为例,在n个点 ...

  9. 2018 USP-ICMC

    简单题 B D F L 中等难度题 E I 更难一点得题 A C G 难题 H K J B. Ugly Number 这个题目很简单,不过我的方法有点点小问题,不过可以改进一下就应该没什么问题了. 这 ...

  10. C++关闭同步流 ios::sync_with_stdio(false)

    说明:ios::sync_with_stdio(false) 1.这句语句是用来取消cin的同步,什么叫同步呢?就是iostream的缓冲跟stdio的同步.这就是为什么cin和cout比scanf和 ...