摘要

在训练YOLO v2的过程中,系统会显示出一些评价训练效果的值,如Recall,IoU等等。为了怕以后忘了,现在把自己对这几种度量方式的理解记录一下。 
这一文章首先假设一个测试集,然后围绕这一测试集来介绍这几种度量方式的计算方法。

大雁与飞机

假设现在有这样一个测试集,测试集中的图片只由大雁和飞机两种图片组成,如下图所示: 

假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。

现在做如下的定义: 
True positives : 飞机的图片被正确的识别成了飞机。 
True negatives: 大雁的图片没有被识别出来,系统正确地认为它们是大雁。 
False positives: 大雁的图片被错误地识别成了飞机。 
False negatives: 飞机的图片没有被识别出来,系统错误地认为它们是大雁。

假设你的分类系统使用了上述假设识别出了四个结果,如下图所示: 

那么在识别出的这四张照片中: 
True positives : 有三个,画绿色框的飞机。 
False positives: 有一个,画红色框的大雁。

没被识别出来的六张图片中: 
True negatives : 有四个,这四个大雁的图片,系统正确地没有把它们识别成飞机。 
False negatives: 有两个,两个飞机没有被识别出来,系统错误地认为它们是大雁。

Precision 与 Recall

Precision其实就是在识别出来的图片中,True positives所占的比率: 
 
其中的n代表的是(True positives + False positives),也就是系统一共识别出来多少照片 。 
在这一例子中,True positives为3,False positives为1,所以Precision值是 3/(3+1)=0.75。 
意味着在识别出的结果中,飞机的图片占75%。

Recall 是被正确识别出来的飞机个数与测试集中所有飞机的个数的比值: 
 
Recall的分母是(True positives + False negatives),这两个值的和,可以理解为一共有多少张飞机的照片。 
在这一例子中,True positives为3,False negatives为2,那么Recall值是 3/(3+2)=0.6。 
意味着在所有的飞机图片中,60%的飞机被正确的识别成飞机.。

调整阈值

你也可以通过调整阈值,来选择让系统识别出多少图片,进而改变Precision 或 Recall 的值。 
在某种阈值的前提下(蓝色虚线),系统识别出了四张图片,如下图中所示: 
 
分类系统认为大于阈值(蓝色虚线之上)的四个图片更像飞机。

我们可以通过改变阈值(也可以看作上下移动蓝色的虚线),来选择让系统识别能出多少个图片,当然阈值的变化会导致Precision与Recall值发生变化。比如,把蓝色虚线放到第一张图片下面,也就是说让系统只识别出最上面的那张飞机图片,那么Precision的值就是100%,而Recall的值则是20%。如果把蓝色虚线放到第二张图片下面,也就是说让系统只识别出最上面的前两张图片,那么Precision的值还是100%,而Recall的值则增长到是40%。

下图为不同阈值条件下,Precision与Recall的变化情况: 

Precision-recall 曲线

如果你想评估一个分类器的性能,一个比较好的方法就是:观察当阈值变化时,Precision与Recall值的变化情况。如果一个分类器的性能比较好,那么它应该有如下的表现:被识别出的图片中飞机所占的比重比较大,并且在识别出大雁之前,尽可能多地正确识别出飞机,也就是让Recall值增长的同时保持Precision的值在一个很高的水平。而性能比较差的分类器可能会损失很多Precision值才能换来Recall值的提高。通常情况下,文章中都会使用Precision-recall曲线,来显示出分类器在Precision与Recall之间的权衡。 
 
上图就是分类器的Precision-recall 曲线,在不损失精度的条件下它能达到40%Recall。而当Recall达到100%时,Precision 降低到50%。

Approximated Average precision

相比较与曲线图,在某些时候还是一个具体的数值能更直观地表现出分类器的性能。通常情况下都是用 Average Precision来作为这一度量标准,它的公式为: 
 
在这一积分中,其中p代表Precision ,r代表Recall,p是一个以r为参数的函数,That is equal to taking the area under the curve.

实际上这一积分极其接近于这一数值:对每一种阈值分别求(Precision值)乘以(Recall值的变化情况),再把所有阈值下求得的乘积值进行累加。公式如下: 
 
在这一公式中,N代表测试集中所有图片的个数,P(k)表示在能识别出k个图片的时候Precision的值,而 Delta r(k) 则表示识别图片个数从k-1变化到k时(通过调整阈值)Recall值的变化情况。

在这一例子中,Approximated Average Precision的值 
=(1 * (0.2-0)) + (1 * (0.4-0.2)) + (0.66 * (0.4-0.4)) + (0.75 * (0.6-0.4)) + (0.6 * (0.6-0.6)) + (0.66 * (0.8-0.6)) + (0.57 * (0.8-0.8)) + (0.5 * (0.8-0.8)) + (0.44 * (0.8-0.8)) + (0.5 * (1-0.8)) = 0.782.

=(1 * 0.2) + (1 * 0.2) + (0.66 * ) + (0.75 * 0.2) + (0.6 * ) + (0.66 * 0.2) + (0.57 * ) + (0.5 * ) + (0.44 * ) + (0.5 * 0.2) = 0.782.

通过计算可以看到,那些Recall值没有变化的地方(红色数值),对增加Average Precision值没有贡献。

Interpolated average precision

不同于Approximated Average Precision,一些作者选择另一种度量性能的标准:Interpolated Average Precision。这一新的算法不再使用P(k),也就是说,不再使用当系统识别出k个图片的时候Precision的值与Recall变化值相乘。而是使用: 
 
也就是每次使用在所有阈值的Precision中,最大值的那个Precision值与Recall的变化值相乘。公式如下: 

下图的图片是Approximated Average Precision 与 Interpolated Average Precision相比较。 
需要注意的是,为了让特征更明显,图片中使用的参数与上面所说的例子无关。 
 
很明显 Approximated Average Precision与精度曲线挨的很近,而使用Interpolated Average Precision算出的Average Precision值明显要比Approximated Average Precision的方法算出的要高。

一些很重要的文章都是用Interpolated Average Precision 作为度量方法,并且直接称算出的值为Average Precision 。PASCAL Visual Objects Challenge从2007年开始就是用这一度量制度,他们认为这一方法能有效地减少Precision-recall 曲线中的抖动。所以在比较文章中Average Precision 值的时候,最好先弄清楚它们使用的是那种度量方式。

IoU

IoU这一值,可以理解为系统预测出来的框与原来图片中标记的框的重合程度。 
计算方法即检测结果Detection Result与 Ground Truth 的交集比上它们的并集,即为检测的准确率:

IoU=DetectionResult⋂GroundTruthDetectionResult⋃GroundTruth

如下图所示: 
蓝色的框是:GroundTruth 
黄色的框是:DetectionResult 
绿色的框是:DetectionResult ⋂ GroundTruth 
红色的框是:DetectionResult ⋃ GroundTruth

要说的

1,本文参考了以下博客 
https://sanchom.wordpress.com/tag/average-precision/ 
http://blog.csdn.net/eddy_zheng/article/details/52126641 
2,在训练YOLO v2中,会出现这几个参数,所以在这总结一下,省得以后忘了。 
3,本文只是一个学习笔记,内容可能会有错误,仅供参考。 
4,如果你发现文中的错误,欢迎留言指正,谢谢! 
5,之后会继续把训练YOLO过程中出现的问题写在博客上。

【YOLO学习】召回率(Recall),精确率(Precision),平均正确率(Average_precision(AP) ),交除并(Intersection-over-Union(IoU))的更多相关文章

  1. 召回率,精确率,mAP如何计算

    首先用训练好的模型得到所有测试样本的confidence  score,每一类(如car)的confidence   score保存到一个文件中(如comp1_cls_test_car.txt).假设 ...

  2. Recall(召回率)and Precision(精确率)

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/7668501.html 前言 机器学习中经过听到" ...

  3. 分类的性能评估:准确率、精确率、Recall召回率、F1、F2

    import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer f ...

  4. 推荐系统评测指标--准确率(Precision)和召回率(Recall)、F值(F-Measure)

    转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个 ...

  5. 准确率、精确率、召回率、F1

    在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...

  6. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  7. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)

    首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...

  8. (转载)准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )-绝对让你完全搞懂这些概念

    自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召 ...

  9. 准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )----转

    原文:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  10. 机器学习常见的几种评价指标:精确率(Precision)、召回率(Recall)、F值(F-measure)、ROC曲线、AUC、准确率(Accuracy)

    原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注 ...

随机推荐

  1. P1018 锤子剪刀布

    转跳点:

  2. Java8大排序算法

    一.冒泡排序 基本思想:通过对待排序序列此前向后,依次比较相邻元素的值,若发现逆序则进行交换,使得较大的值从前面移动到后面,       类似于水下的气泡一样(是所有排序算法中效率最低的) publi ...

  3. 汇编,寄存器,内存,mov指令

    一.代码 和 汇编 和 二进制之间的关系 二.复习一下计算机组成原理的知识 1.寄存器 计算机中有三个存储 32位cpu提供的寄存器有三种类型8位 16位 32位 64位的只是32位的扩展 并且程序大 ...

  4. Java8 Optional类使用小结

    Optional类的Javadoc描述如下: 这是一个可以为null的容器对象.如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象. of:  为非null的值创建一 ...

  5. Web前端工程师需要注意的开发规范有哪些?

    从事web前端开发工作我们就需要了解web前端开发的规范,这样才能保证高效快速的完成工作,本篇就和大家分享一下web前端开发工程师需要注意的web前端开发规范有哪些,希望对小伙伴们有所帮助. web前 ...

  6. Javascript里EQ、NE、GT、LT、GE、LE含义

    EQ 就是 EQUAL等于 NE就是 NOT EQUAL不等于 GT 就是 GREATER THAN大于  LT 就是 LESS THAN小于 GE 就是 GREATER THAN OR EQUAL ...

  7. 寒假day19

    今天编写了人才动态模块,同时刷了一些算法题.

  8. MyBatis:一对多、多对一处理

    多对一的处理 多对一的理解: 多个学生对应一个老师 如果对于学生这边,就是一个多对一的现象,即从学生这边关联一个老师! 数据库设计 CREATE TABLE `teacher` ( `id` INT( ...

  9. DRF框架之DRF的引入

    DRF框架是python_web中采用前后端分离开发模式的框架,其处理JSON数据是最快的. 通过DRF框架,我们后端程序员只需要拼接并响应JSON数据即可,并且数据复用性高适用于浏览器端.APP端等 ...

  10. 浅入深出Java输入输出流主线知识梳理

      Java把不同类型的输入.输出,这些输入输出有些是在屏幕上.有些是在电脑文件上, 都抽象为流(Stream) 按流的方向,分为输入流与输出流,注意这里的输出输出是相对于程序而言的,如:如对于一个J ...