强智教务系统验证码识别 OpenCV

强智教务系统验证码验证码字符位置相对固定,比较好切割
找准切割位置,将其分为四部分,匹配自建库即可,识别率近乎100%,如果觉得不错,点个star吧
https://github.com/WindrunnerMax/SWVerifyCode 提供Java、PHP、Python、JavaScript版本

首先使用代码切割验证码,挑选出切割的比较好的验证码,制作比对库
由于使用matchTemplate函数,要求待匹配图必须比库图小,于是需要放大库图边界

TestImgCut.py切割图片并挑选合适切割位置

  1. #!/usr/bin/python
  2. # -*- coding: utf-8 -*-
  3. from fnmatch import fnmatch
  4. from queue import Queue
  5. import matplotlib.pyplot as plt
  6. import cv2
  7. import time
  8. import os
  9. from Convert import Convert
  10. import requests
  11. def _get_static_binary_image(img, threshold = 140):
  12. '''
  13. 手动二值化
  14. '''
  15. img = Image.open(img)
  16. img = img.convert('L')
  17. pixdata = img.load()
  18. w, h = img.size
  19. for y in range(h):
  20. for x in range(w):
  21. if pixdata[x, y] < threshold:
  22. pixdata[x, y] = 0
  23. else:
  24. pixdata[x, y] = 255
  25. return img
  26. def cfs(im,x_fd,y_fd):
  27. '''用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
  28. '''
  29. # print('**********')
  30. xaxis=[]
  31. yaxis=[]
  32. visited =set()
  33. q = Queue()
  34. q.put((x_fd, y_fd))
  35. visited.add((x_fd, y_fd))
  36. offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域
  37. while not q.empty():
  38. x,y=q.get()
  39. for xoffset,yoffset in offsets:
  40. x_neighbor,y_neighbor = x+xoffset,y+yoffset
  41. if (x_neighbor,y_neighbor) in (visited):
  42. continue # 已经访问过了
  43. visited.add((x_neighbor, y_neighbor))
  44. try:
  45. if im[x_neighbor, y_neighbor] == 0:
  46. xaxis.append(x_neighbor)
  47. yaxis.append(y_neighbor)
  48. q.put((x_neighbor,y_neighbor))
  49. except IndexError:
  50. pass
  51. # print(xaxis)
  52. if (len(xaxis) == 0 | len(yaxis) == 0):
  53. xmax = x_fd + 1
  54. xmin = x_fd
  55. ymax = y_fd + 1
  56. ymin = y_fd
  57. else:
  58. xmax = max(xaxis)
  59. xmin = min(xaxis)
  60. ymax = max(yaxis)
  61. ymin = min(yaxis)
  62. #ymin,ymax=sort(yaxis)
  63. return ymax,ymin,xmax,xmin
  64. def detectFgPix(im,xmax):
  65. '''搜索区块起点
  66. '''
  67. h,w = im.shape[:2]
  68. for y_fd in range(xmax+1,w):
  69. for x_fd in range(h):
  70. if im[x_fd,y_fd] == 0:
  71. return x_fd,y_fd
  72. def CFS(im):
  73. '''切割字符位置
  74. '''
  75. zoneL=[]#各区块长度L列表
  76. zoneWB=[]#各区块的X轴[起始,终点]列表
  77. zoneHB=[]#各区块的Y轴[起始,终点]列表
  78. xmax=0#上一区块结束黑点横坐标,这里是初始化
  79. for i in range(10):
  80. try:
  81. x_fd,y_fd = detectFgPix(im,xmax)
  82. # print(y_fd,x_fd)
  83. xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
  84. L = xmax - xmin
  85. H = ymax - ymin
  86. zoneL.append(L)
  87. zoneWB.append([xmin,xmax])
  88. zoneHB.append([ymin,ymax])
  89. except TypeError:
  90. return zoneL,zoneWB,zoneHB
  91. return zoneL,zoneWB,zoneHB
  92. def cutting_img(im,im_position,xoffset = 1,yoffset = 1):
  93. # 识别出的字符个数
  94. im_number = len(im_position[1])
  95. if(im_number>=4): im_number = 4;
  96. imgArr = []
  97. # 切割字符
  98. for i in range(im_number):
  99. im_start_X = im_position[1][i][0] - xoffset
  100. im_end_X = im_position[1][i][1] + xoffset
  101. im_start_Y = im_position[2][i][0] - yoffset
  102. im_end_Y = im_position[2][i][1] + yoffset
  103. cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
  104. imgArr.append(cropped)
  105. cv2.imwrite(str(i)+"v.jpg",cropped) # 查看切割效果
  106. return im_number,imgArr
  107. def main():
  108. cvt = Convert()
  109. req = requests.get("http://XXXXXXXXXXXXXXXXXXX/verifycode.servlet")
  110. img = cvt.run(req.content)
  111. cv2.imwrite("v.jpg",img)
  112. #切割的位置
  113. im_position = CFS(img) # Auto
  114. print(im_position)
  115. maxL = max(im_position[0])
  116. minL = min(im_position[0])
  117. # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
  118. if(maxL > minL + minL * 0.7):
  119. maxL_index = im_position[0].index(maxL)
  120. minL_index = im_position[0].index(minL)
  121. # 设置字符的宽度
  122. im_position[0][maxL_index] = maxL // 2
  123. im_position[0].insert(maxL_index + 1, maxL // 2)
  124. # 设置字符X轴[起始,终点]位置
  125. im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
  126. im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
  127. # 设置字符的Y轴[起始,终点]位置
  128. im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
  129. # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
  130. cutting_img_num,imgArr = cutting_img(img,im_position,1,1)
  131. # # 直接使用库读取图片识别验证码
  132. # result=""
  133. # for i in range(cutting_img_num):
  134. # try:
  135. # template = imgArr[i]
  136. # tempResult=""
  137. # matchingDegree=0.0
  138. # filedirWarehouse = '../../Warehouse/StrIntell/'
  139. # for fileImg in os.listdir(filedirWarehouse):
  140. # if fnmatch(fileImg, '*.jpg'):
  141. # # print(file)
  142. # img = cv2.imread(filedirWarehouse+fileImg,0)
  143. # res = cv2.matchTemplate(img,template,3) #img原图 template模板 用模板匹配原图
  144. # min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
  145. # # print(str(i)+" "+file.split('.')[0]+" "+str(max_val))
  146. # if(max_val>matchingDegree):
  147. # tempResult=fileImg.split('.')[0]
  148. # matchingDegree=max_val
  149. # result+=tempResult
  150. # matchingDegree=0.0
  151. # except Exception as err:
  152. # print("ERROR "+ str(err))
  153. # pass
  154. # print('切图:%s' % cutting_img_num)
  155. # print('识别为:%s' % result)
  156. if __name__ == '__main__':
  157. main()

resize.py改变图片边界

  1. import cv2
  2. from fnmatch import fnmatch
  3. import os
  4. def main():
  5. filedir = './StrIntell'
  6. for file in os.listdir(filedir):
  7. if fnmatch(file, '*.jpg'):
  8. fileLoc=filedir+"/"+file
  9. img=cv2.imread(fileLoc)
  10. # img=cv2.copyMakeBorder(img,10,10,10,10,cv2.BORDER_CONSTANT,value=[255,255,255]) # 扩大
  11. # img = img[0:25, 0:25] # 裁剪 高*宽
  12. print(img.shape)
  13. cv2.imwrite(fileLoc, img)
  14. if __name__ == '__main__':
  15. main()

挑选好合适的库图片并将其resize
使用TestImgCut.py直接读库识别验证码
根据效果挑选合适的切割位置并保存起来
当觉得库文件与切割位置合适,将图片转为list并保存在变量
保存在变量的主要目的是可以直接读取到内存,避免频繁读硬盘造成时间浪费

binary.py转字符为变量

  1. import cv2
  2. import os
  3. from fnmatch import fnmatch
  4. import numpy as np
  5. np.set_printoptions(threshold=np.inf) # 不省略输出
  6. if __name__ == '__main__':
  7. binary = ""
  8. for fileImg in os.listdir("StrIntell/"):
  9. if fnmatch(fileImg, '*.jpg'):
  10. img = cv2.imread("StrIntell/"+fileImg,0)
  11. binary = binary + "'" +fileImg.split(".")[0] + "'" + ":" + str(img.tolist()) + ","
  12. # cv2.imwrite("test.jpg", np.array(img.tolist()))
  13. binary = "charMap = {" + binary + "}"
  14. with open("CharMap.py",'w+') as f:
  15. f.write(binary)

CharMap.py字符变量

  1. charMap = {'1':[[255, 255, 254, 254, 255, 251, 254, 255, 254, 253, 254, 255, 255], [252, 254, 251, 255, 255, 254, 255, 255, 254, 253, 254, 255, 255], [255, 249, 255, 252, 248, 255, 250, 255, 252, 252, 253, 254, 254], [253, 255, 250, 255, 249, 255, 1, 0, 251, 252, 253, 253, 254], [253, 255, 250, 253, 5, 1, 3, 0, 253, 254, 254, 254, 253], [254, 251, 255, 253, 0, 0, 5, 2, 253, 255, 255, 254, 253], [254, 254, 250, 255, 252, 254, 2, 0, 251, 253, 255, 255, 254], [254, 250, 255, 255, 255, 254, 3, 5, 250, 252, 254, 254, 254], [255, 255, 248, 255, 249, 254, 2, 0, 255, 255, 255, 253, 255], [252, 255, 251, 255, 255, 253, 1, 0, 254, 255, 253, 254, 255], [255, 251, 254, 255, 250, 254, 2, 0, 255, 255, 252, 253, 251], [253, 255, 252, 253, 248, 253, 0, 6, 255, 251, 254, 252, 251], [255, 250, 255, 249, 255, 255, 0, 2, 250, 255, 253, 255, 254], [254, 255, 253, 255, 0, 0, 2, 1, 1, 2, 254, 251, 255], [254, 254, 247, 255, 0, 3, 3, 0, 3, 3, 254, 251, 254], [252, 253, 255, 252, 255, 255, 251, 255, 254, 254, 253, 255, 252], [255, 255, 255, 249, 255, 253, 255, 252, 255, 255, 252, 251, 254]],'2':[[249, 255, 251, 254, 255, 253, 253, 253, 255, 255, 252, 251, 255], [255, 253, 255, 251, 249, 255, 254, 255, 252, 253, 255, 255, 253], [253, 254, 252, 255, 254, 253, 255, 253, 253, 255, 250, 252, 255], [254, 255, 252, 2, 0, 3, 1, 0, 255, 255, 253, 254, 255], [254, 252, 5, 0, 2, 0, 3, 1, 3, 249, 253, 255, 254], [254, 255, 254, 249, 251, 251, 253, 253, 4, 1, 254, 255, 251], [255, 254, 251, 255, 251, 255, 255, 250, 0, 4, 253, 251, 254], [255, 250, 251, 252, 255, 246, 253, 254, 9, 2, 252, 255, 251], [248, 255, 253, 252, 255, 255, 255, 5, 0, 254, 253, 254, 255], [253, 255, 251, 255, 252, 0, 0, 0, 255, 251, 255, 251, 255], [255, 250, 252, 255, 1, 2, 255, 253, 250, 255, 252, 255, 250], [254, 253, 255, 0, 6, 255, 247, 255, 252, 255, 252, 251, 255], [254, 255, 2, 2, 0, 250, 255, 253, 251, 254, 253, 252, 255], [254, 254, 3, 2, 1, 1, 5, 1, 3, 1, 255, 253, 252], [252, 251, 1, 3, 0, 3, 0, 4, 7, 1, 252, 254, 255], [254, 255, 255, 255, 255, 255, 255, 253, 252, 255, 254, 255, 253], [252, 255, 255, 255, 253, 255, 251, 253, 255, 255, 251, 255, 254]],'3':[[255, 253, 253, 255, 255, 253, 251, 255, 254, 253, 255, 255, 250], [255, 253, 251, 255, 255, 254, 253, 249, 255, 254, 253, 255, 254], [253, 251, 255, 252, 252, 255, 254, 255, 255, 254, 253, 252, 253], [255, 253, 249, 253, 255, 0, 4, 0, 0, 0, 255, 255, 252], [254, 255, 255, 250, 3, 3, 0, 6, 4, 0, 0, 255, 254], [254, 255, 255, 253, 252, 255, 252, 252, 253, 3, 0, 254, 255], [255, 250, 255, 255, 252, 253, 255, 253, 253, 254, 0, 248, 255], [255, 255, 254, 254, 253, 253, 253, 252, 255, 0, 2, 253, 253], [254, 255, 253, 255, 255, 251, 0, 1, 0, 3, 253, 255, 253], [254, 250, 255, 255, 255, 255, 0, 5, 4, 0, 0, 252, 254], [255, 255, 254, 252, 255, 254, 254, 255, 255, 0, 3, 254, 253], [254, 250, 255, 254, 254, 254, 253, 250, 251, 255, 0, 255, 255], [255, 255, 253, 255, 255, 252, 253, 255, 255, 4, 3, 251, 251], [255, 255, 252, 254, 254, 4, 0, 1, 4, 0, 2, 255, 254], [254, 254, 255, 252, 254, 0, 0, 2, 5, 0, 255, 250, 254], [255, 255, 254, 254, 255, 254, 255, 254, 255, 253, 253, 252, 251], [255, 255, 255, 255, 255, 255, 254, 254, 252, 255, 253, 255, 254]],'b':[[254, 255, 255, 255, 254, 255, 253, 255, 255, 254, 255, 255, 253], [255, 252, 251, 253, 252, 255, 254, 252, 255, 255, 255, 252, 255], [253, 255, 255, 252, 255, 255, 252, 255, 255, 250, 255, 255, 255], [255, 253, 0, 1, 252, 252, 255, 252, 253, 255, 253, 254, 255], [255, 251, 4, 0, 255, 252, 255, 254, 255, 253, 255, 253, 251], [253, 255, 0, 5, 254, 254, 255, 253, 249, 250, 255, 255, 253], [253, 255, 4, 1, 3, 0, 1, 0, 9, 254, 250, 249, 255], [254, 253, 2, 1, 0, 3, 0, 5, 0, 1, 255, 249, 253], [253, 251, 4, 0, 4, 255, 255, 252, 1, 0, 3, 255, 252], [255, 255, 0, 4, 250, 249, 255, 255, 255, 0, 0, 254, 254], [252, 254, 0, 5, 254, 255, 252, 252, 255, 5, 0, 255, 255], [254, 253, 4, 0, 255, 251, 250, 255, 254, 1, 2, 255, 254], [254, 255, 0, 0, 2, 255, 254, 252, 3, 0, 1, 253, 255], [248, 253, 1, 4, 2, 0, 2, 4, 1, 0, 255, 253, 255], [255, 255, 4, 1, 253, 2, 4, 0, 13, 249, 254, 255, 252], [249, 255, 254, 251, 255, 253, 254, 253, 254, 255, 253, 255, 251], [255, 254, 255, 251, 255, 255, 253, 252, 252, 255, 255, 255, 255]],'c':[[254, 255, 255, 255, 255, 254, 254, 255, 255, 255, 254, 255, 253], [255, 255, 251, 254, 255, 255, 255, 255, 254, 255, 254, 254, 254], [255, 255, 255, 252, 255, 251, 254, 254, 255, 253, 255, 254, 255], [254, 251, 255, 255, 254, 255, 251, 254, 253, 255, 254, 254, 255], [255, 255, 252, 254, 255, 250, 255, 253, 255, 248, 255, 255, 255], [255, 255, 255, 252, 251, 255, 255, 251, 255, 254, 255, 255, 250], [249, 255, 255, 252, 7, 0, 0, 2, 0, 255, 251, 255, 255], [255, 252, 253, 7, 0, 3, 0, 0, 0, 255, 255, 254, 254], [254, 255, 1, 5, 2, 254, 254, 254, 255, 249, 255, 255, 254], [252, 255, 0, 6, 247, 255, 252, 255, 253, 254, 254, 254, 255], [255, 250, 0, 0, 255, 255, 252, 255, 254, 255, 251, 253, 255], [254, 252, 4, 1, 252, 255, 252, 250, 251, 254, 255, 255, 255], [250, 255, 0, 4, 0, 250, 254, 255, 255, 250, 255, 254, 249], [255, 255, 254, 0, 1, 0, 2, 0, 0, 252, 254, 255, 255], [254, 255, 252, 255, 3, 0, 0, 3, 2, 255, 252, 255, 255], [248, 255, 252, 253, 254, 255, 255, 255, 253, 255, 255, 255, 250], [255, 255, 254, 251, 255, 253, 252, 254, 255, 253, 255, 255, 254]],'m':[[254, 253, 255, 252, 255, 252, 255, 255, 255, 255, 253, 255, 255], [255, 255, 252, 255, 252, 255, 253, 254, 252, 255, 255, 252, 255], [255, 255, 255, 253, 255, 254, 254, 255, 253, 255, 254, 254, 255], [254, 253, 254, 255, 255, 254, 251, 253, 255, 255, 253, 255, 253], [254, 255, 255, 251, 254, 254, 253, 253, 253, 252, 254, 253, 255], [255, 250, 255, 255, 255, 255, 252, 255, 254, 254, 255, 255, 255], [255, 255, 0, 8, 253, 0, 7, 0, 5, 251, 250, 255, 254], [254, 255, 1, 0, 2, 9, 1, 1, 1, 4, 1, 255, 255], [255, 253, 6, 0, 1, 254, 255, 255, 3, 0, 1, 255, 252], [255, 251, 1, 0, 255, 255, 249, 254, 0, 3, 255, 250, 255], [254, 253, 2, 1, 252, 254, 252, 255, 3, 0, 255, 254, 252], [255, 255, 0, 1, 255, 252, 255, 253, 0, 7, 253, 249, 255], [254, 251, 4, 0, 250, 254, 255, 254, 2, 0, 255, 255, 252], [255, 255, 2, 3, 254, 255, 254, 255, 4, 0, 255, 253, 255], [254, 255, 0, 0, 255, 253, 253, 255, 1, 0, 255, 254, 248], [255, 254, 255, 255, 253, 255, 255, 255, 253, 255, 253, 255, 255], [255, 253, 251, 252, 254, 254, 254, 255, 254, 255, 255, 254, 254]],'n':[[254, 255, 253, 252, 255, 255, 252, 255, 254, 255, 253, 255, 255], [255, 253, 255, 255, 252, 252, 255, 255, 255, 255, 255, 255, 254], [255, 254, 255, 255, 254, 255, 250, 253, 251, 255, 255, 254, 255], [255, 255, 253, 255, 253, 255, 255, 255, 255, 254, 250, 255, 252], [254, 255, 255, 252, 255, 254, 254, 253, 251, 255, 254, 255, 255], [255, 254, 255, 253, 253, 255, 254, 255, 255, 254, 254, 252, 253], [254, 254, 7, 0, 255, 254, 0, 0, 0, 5, 254, 255, 251], [253, 255, 0, 1, 1, 0, 8, 0, 4, 0, 1, 252, 254], [254, 255, 0, 4, 2, 0, 251, 255, 245, 0, 1, 250, 254], [253, 254, 0, 2, 0, 255, 254, 252, 252, 1, 0, 255, 252], [252, 251, 5, 0, 253, 254, 255, 251, 255, 2, 1, 253, 255], [255, 250, 2, 6, 250, 255, 250, 255, 250, 0, 2, 255, 249], [247, 255, 0, 0, 254, 253, 255, 254, 255, 2, 0, 255, 255], [250, 255, 3, 1, 255, 255, 252, 255, 250, 6, 1, 254, 253], [255, 252, 3, 0, 255, 254, 251, 253, 254, 0, 0, 255, 255], [253, 255, 253, 255, 253, 255, 255, 255, 253, 255, 255, 251, 253], [255, 253, 251, 251, 254, 251, 255, 254, 254, 255, 252, 253, 255]],'v':[[255, 255, 254, 255, 253, 255, 252, 255, 255, 254, 255, 255, 253], [255, 255, 254, 255, 253, 251, 255, 255, 254, 255, 254, 252, 255], [255, 254, 255, 255, 255, 254, 255, 254, 253, 253, 255, 255, 254], [253, 255, 254, 252, 254, 255, 251, 255, 254, 255, 254, 254, 254], [255, 253, 255, 254, 255, 255, 254, 254, 255, 255, 254, 255, 255], [255, 255, 254, 248, 254, 250, 254, 255, 255, 250, 255, 252, 252], [252, 255, 252, 255, 254, 255, 252, 253, 255, 255, 1, 253, 253], [254, 255, 253, 253, 6, 0, 254, 250, 255, 0, 1, 255, 253], [253, 252, 255, 253, 1, 0, 255, 254, 251, 3, 0, 255, 252], [253, 252, 251, 255, 0, 3, 254, 251, 255, 3, 1, 252, 255], [255, 255, 254, 253, 255, 0, 0, 255, 0, 1, 255, 254, 251], [255, 251, 252, 251, 248, 1, 0, 4, 1, 2, 254, 254, 255], [255, 252, 254, 255, 255, 0, 3, 0, 3, 0, 255, 249, 253], [254, 254, 253, 255, 254, 254, 4, 0, 0, 255, 251, 255, 255], [255, 255, 255, 255, 255, 252, 2, 0, 1, 248, 255, 254, 248], [255, 253, 255, 254, 255, 255, 255, 252, 255, 255, 252, 252, 254], [255, 255, 254, 255, 255, 253, 255, 254, 254, 251, 255, 255, 252]],'x':[[255, 255, 255, 255, 253, 255, 253, 255, 255, 255, 255, 255, 254], [253, 255, 254, 255, 254, 255, 255, 255, 252, 255, 255, 251, 255], [255, 253, 255, 252, 255, 255, 250, 255, 255, 255, 255, 255, 252], [255, 254, 254, 253, 253, 255, 254, 255, 253, 253, 254, 254, 255], [254, 255, 253, 255, 254, 250, 252, 255, 255, 255, 253, 255, 255], [250, 255, 253, 252, 254, 255, 254, 254, 252, 255, 255, 251, 255], [255, 252, 0, 4, 254, 251, 255, 4, 2, 255, 250, 255, 253], [251, 252, 5, 0, 255, 254, 254, 0, 3, 255, 255, 251, 254], [255, 249, 255, 9, 0, 251, 14, 0, 255, 255, 254, 255, 255], [251, 255, 252, 253, 0, 4, 0, 255, 254, 253, 251, 251, 255], [252, 255, 254, 254, 5, 3, 5, 255, 248, 255, 255, 255, 255], [255, 252, 254, 252, 1, 4, 0, 255, 253, 255, 249, 251, 255], [254, 255, 252, 6, 1, 250, 1, 1, 255, 251, 255, 255, 253], [252, 255, 1, 0, 255, 255, 255, 3, 5, 251, 255, 252, 255], [255, 252, 4, 2, 254, 251, 253, 2, 0, 254, 255, 253, 253], [255, 251, 254, 255, 254, 255, 252, 255, 255, 255, 252, 254, 254], [255, 253, 252, 252, 253, 255, 253, 251, 255, 253, 254, 255, 251]],'z':[[255, 255, 255, 254, 255, 254, 255, 255, 255, 255, 255, 254, 255], [254, 254, 255, 255, 255, 254, 255, 253, 255, 255, 255, 254, 254], [255, 255, 252, 253, 252, 255, 255, 255, 255, 252, 255, 255, 255], [255, 255, 252, 255, 254, 248, 255, 250, 254, 255, 249, 255, 254], [255, 253, 255, 254, 255, 255, 255, 253, 253, 254, 254, 254, 254], [253, 253, 255, 252, 250, 250, 251, 253, 255, 254, 251, 255, 255], [255, 254, 0, 3, 6, 4, 9, 0, 0, 255, 252, 251, 254], [253, 253, 2, 0, 0, 3, 0, 1, 1, 250, 255, 253, 254], [253, 255, 254, 252, 255, 4, 0, 1, 255, 254, 251, 255, 255], [255, 255, 254, 253, 255, 2, 0, 254, 254, 252, 255, 253, 255], [253, 247, 255, 252, 4, 6, 252, 255, 255, 254, 255, 253, 252], [255, 255, 252, 9, 0, 254, 250, 250, 252, 254, 255, 255, 253], [255, 254, 0, 0, 5, 254, 255, 255, 255, 254, 253, 254, 251], [255, 252, 3, 4, 3, 0, 0, 1, 0, 254, 254, 254, 255], [248, 255, 3, 0, 2, 1, 1, 0, 1, 255, 252, 254, 255], [255, 250, 255, 254, 254, 255, 255, 255, 254, 253, 254, 255, 249], [252, 253, 255, 253, 254, 255, 252, 253, 255, 255, 255, 255, 255]],}

Convert.py转换为灰度图并降噪

  1. import cv2
  2. import numpy as np
  3. class Convert(object):
  4. """docstring for Convert"""
  5. def __init__(self):
  6. super(Convert, self).__init__()
  7. def _get_dynamic_binary_image(self,img):
  8. '''
  9. 自适应阀值二值化
  10. '''
  11. img = cv2.imdecode(np.frombuffer(img, np.uint8), cv2.IMREAD_COLOR)
  12. img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  13. th1 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
  14. return th1
  15. def clear_border(self,img):
  16. '''去除边框
  17. '''
  18. h, w = img.shape[:2]
  19. for y in range(0, w):
  20. for x in range(0, h):
  21. # if y ==0 or y == w -1 or y == w - 2:
  22. if y < 4 or y > w -4:
  23. img[x, y] = 255
  24. # if x == 0 or x == h - 1 or x == h - 2:
  25. if x < 4 or x > h - 4:
  26. img[x, y] = 255
  27. return img
  28. def interference_line(self,img):
  29. '''
  30. 干扰线降噪
  31. '''
  32. h, w = img.shape[:2]
  33. # !!!opencv矩阵点是反的
  34. # img[1,2] 1:图片的高度,2:图片的宽度
  35. for y in range(1, w - 1):
  36. for x in range(1, h - 1):
  37. count = 0
  38. if img[x, y - 1] > 245:
  39. count = count + 1
  40. if img[x, y + 1] > 245:
  41. count = count + 1
  42. if img[x - 1, y] > 245:
  43. count = count + 1
  44. if img[x + 1, y] > 245:
  45. count = count + 1
  46. if count > 2:
  47. img[x, y] = 255
  48. return img
  49. def interference_point(self,img, x = 0, y = 0):
  50. """点降噪
  51. 9邻域框,以当前点为中心的田字框,黑点个数
  52. :param x:
  53. :param y:
  54. :return:
  55. """
  56. # todo 判断图片的长宽度下限
  57. cur_pixel = img[x,y]# 当前像素点的值
  58. height,width = img.shape[:2]
  59. for y in range(0, width - 1):
  60. for x in range(0, height - 1):
  61. if y == 0: # 第一行
  62. if x == 0: # 左上顶点,4邻域
  63. # 中心点旁边3个点
  64. sum = int(cur_pixel) \
  65. + int(img[x, y + 1]) \
  66. + int(img[x + 1, y]) \
  67. + int(img[x + 1, y + 1])
  68. if sum <= 2 * 245:
  69. img[x, y] = 0
  70. elif x == height - 1: # 右上顶点
  71. sum = int(cur_pixel) \
  72. + int(img[x, y + 1]) \
  73. + int(img[x - 1, y]) \
  74. + int(img[x - 1, y + 1])
  75. if sum <= 2 * 245:
  76. img[x, y] = 0
  77. else: # 最上非顶点,6邻域
  78. sum = int(img[x - 1, y]) \
  79. + int(img[x - 1, y + 1]) \
  80. + int(cur_pixel) \
  81. + int(img[x, y + 1]) \
  82. + int(img[x + 1, y]) \
  83. + int(img[x + 1, y + 1])
  84. if sum <= 3 * 245:
  85. img[x, y] = 0
  86. elif y == width - 1: # 最下面一行
  87. if x == 0: # 左下顶点
  88. # 中心点旁边3个点
  89. sum = int(cur_pixel) \
  90. + int(img[x + 1, y]) \
  91. + int(img[x + 1, y - 1]) \
  92. + int(img[x, y - 1])
  93. if sum <= 2 * 245:
  94. img[x, y] = 0
  95. elif x == height - 1: # 右下顶点
  96. sum = int(cur_pixel) \
  97. + int(img[x, y - 1]) \
  98. + int(img[x - 1, y]) \
  99. + int(img[x - 1, y - 1])
  100. if sum <= 2 * 245:
  101. img[x, y] = 0
  102. else: # 最下非顶点,6邻域
  103. sum = int(cur_pixel) \
  104. + int(img[x - 1, y]) \
  105. + int(img[x + 1, y]) \
  106. + int(img[x, y - 1]) \
  107. + int(img[x - 1, y - 1]) \
  108. + int(img[x + 1, y - 1])
  109. if sum <= 3 * 245:
  110. img[x, y] = 0
  111. else: # y不在边界
  112. if x == 0: # 左边非顶点
  113. sum = int(img[x, y - 1]) \
  114. + int(cur_pixel) \
  115. + int(img[x, y + 1]) \
  116. + int(img[x + 1, y - 1]) \
  117. + int(img[x + 1, y]) \
  118. + int(img[x + 1, y + 1])
  119. if sum <= 3 * 245:
  120. img[x, y] = 0
  121. elif x == height - 1: # 右边非顶点
  122. sum = int(img[x, y - 1]) \
  123. + int(cur_pixel) \
  124. + int(img[x, y + 1]) \
  125. + int(img[x - 1, y - 1]) \
  126. + int(img[x - 1, y]) \
  127. + int(img[x - 1, y + 1])
  128. if sum <= 3 * 245:
  129. img[x, y] = 0
  130. else: # 具备9领域条件的
  131. sum = int(img[x - 1, y - 1]) \
  132. + int(img[x - 1, y]) \
  133. + int(img[x - 1, y + 1]) \
  134. + int(img[x, y - 1]) \
  135. + int(cur_pixel) \
  136. + int(img[x, y + 1]) \
  137. + int(img[x + 1, y - 1]) \
  138. + int(img[x + 1, y]) \
  139. + int(img[x + 1, y + 1])
  140. if sum <= 4 * 245:
  141. img[x, y] = 0
  142. return img
  143. def run(self,img):
  144. # 自适应阈值二值化
  145. img = self._get_dynamic_binary_image(img)
  146. # 去除边框
  147. img = self.clear_border(img)
  148. # 对图片进行干扰线降噪
  149. img = self.interference_line(img)
  150. # 对图片进行点降噪
  151. img = self.interference_point(img)
  152. return img

ImgMain.py识别代码

  1. #!/usr/bin/python
  2. # -*- coding: utf-8 -*-
  3. from fnmatch import fnmatch
  4. from queue import Queue
  5. import matplotlib.pyplot as plt
  6. import cv2
  7. import time
  8. import os
  9. from Convert import Convert
  10. from CharMap import charMap
  11. import requests
  12. import numpy as np
  13. def cutting_img(im,im_position,xoffset = 1,yoffset = 1):
  14. # 识别出的字符个数
  15. im_number = len(im_position[1])
  16. if(im_number>=4): im_number = 4;
  17. imgArr = []
  18. # 切割字符
  19. for i in range(im_number):
  20. im_start_X = im_position[1][i][0] - xoffset
  21. im_end_X = im_position[1][i][1] + xoffset
  22. im_start_Y = im_position[2][i][0] - yoffset
  23. im_end_Y = im_position[2][i][1] + yoffset
  24. cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
  25. imgArr.append(cropped)
  26. # cv2.imwrite(str(i)+"v.jpg",cropped) # 查看切割效果
  27. return im_number,imgArr
  28. def main():
  29. cvt = Convert()
  30. req = requests.get("http://xxxxxxxxxxxxxxxx/verifycode.servlet")
  31. # 注意有些教务加装了所谓云防护,没有请求头会拦截,导致获取不了验证码图片,报错可以打印req.content看看
  32. img = cvt.run(req.content)
  33. cv2.imwrite("v.jpg",img) # 查看验证码
  34. #切割的位置
  35. im_position = ([8, 7, 6, 9], [[4, 12], [14, 21], [24, 30], [34, 43]], [[7, 16], [7, 16], [7, 16], [7, 16]])
  36. cutting_img_num,imgArr = cutting_img(img,im_position,1,1)
  37. # 识别验证码
  38. result=""
  39. for i in range(cutting_img_num):
  40. try:
  41. template = imgArr[i]
  42. tempResult=""
  43. matchingDegree=0.0
  44. for char in charMap:
  45. img = np.asarray(charMap[char],dtype = np.uint8)
  46. res = cv2.matchTemplate(img,template,3) #img原图 template模板 用模板匹配原图
  47. min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
  48. if(max_val>matchingDegree):
  49. tempResult=char
  50. matchingDegree=max_val
  51. result += tempResult
  52. matchingDegree=0.0
  53. except Exception as err:
  54. raise Exception
  55. # print("ERROR "+ str(err))
  56. pass
  57. print(result)
  58. if __name__ == '__main__':
  59. main()

提供全部代码
https://github.com/WindrunnerMax/SWVerifyCode

强智教务系统验证码识别 OpenCV的更多相关文章

  1. 强智教务系统验证码识别 Tensorflow CNN

    强智教务系统验证码识别 Tensorflow CNN 一直都是使用API取得数据,但是API提供的数据较少,且为了防止API关闭,先把验证码问题解决 使用Tensorflow训练模型,强智教务系统的验 ...

  2. Java模拟登录带验证码的教务系统(原理详解)

    一:原理 客户端访问服务器,服务器通过Session对象记录会话,服务器可以指定一个唯一的session ID作为cookie来代表每个客户端,用来识别这个客户端接下来的请求. 我们通过Chrome浏 ...

  3. uu云验证码识别平台,验证码,验证码识别,全自动验证码识别技术,优优云全自动打码,代答题系统,优优云远程打码平台,uu云打码

    uu云验证码识别平台,验证码,验证码识别,全自动验证码识别技术,优优云全自动打码,代答题系统,优优云远程打码平台,uu云打码 优优云验证码识别答题平台介绍 优优云|UU云(中国公司)是全球唯一领先的智 ...

  4. 使用tensorflow搭建自己的验证码识别系统

    目录 准备验证码数据 保存为tfrecords文件 验证码训练 学习tensorflow有一段时间了,想做点东西来练一下手.为了更有意思点,下面将搭建一个简单的验证码识别系统. 准备验证码数据 下面将 ...

  5. windows下简单验证码识别——完美验证码识别系统

    此文已由作者徐迪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 讲到验证码识别,大家第一个可能想到tesseract.诚然,对于OCR而言,tesseract确实很强大,自带 ...

  6. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  7. 完整的验证码识别流程基于svm(若是想提升,可优化)

    字符型图片验证码识别完整过程及Python实现 首先很感觉这篇文章的作者,将这篇文章写的这么好.我呢,也是拿来学习,觉得太好,所以忍不住就进行了转载. 因为我个人现在手上也有个验证码识别的项目,只是难 ...

  8. 字符识别Python实现 图片验证码识别

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  9. 基于tensorflow的‘端到端’的字符型验证码识别源码整理(github源码分享)

    基于tensorflow的‘端到端’的字符型验证码识别 1   Abstract 验证码(CAPTCHA)的诞生本身是为了自动区分 自然人 和 机器人 的一套公开方法, 但是近几年的人工智能技术的发展 ...

随机推荐

  1. StringUtil中isBlank(),idNUll,isEmpty的区别

    StringUtils 方法的操作对象是 java.lang.String 类型的对象,是 JDK 提供的 String 类型操作方法的补充,并且是 null 安全的(即如果输入参数 String 为 ...

  2. 我们一起学React Native(一):环境配置

    最近想在项目中实现跨平台,对比一下主流的实现方式,选用了React Native.参考网上的教程,对于一直都是原生移动端开发,对前端的知识不是很了解的,感觉入门不是特别简单.于是打算把学习React ...

  3. js中判断为false的情况

     document.write((new Boolean())+"<br />");        document.write((new Boolean(" ...

  4. MyBatis之一级缓存及其一级缓存失效

    定义: 一级缓存:本地缓存:与数据库同一次会话(sqlSession)期间查询到的数据会放在本地缓存中,如果以后要获取相同的数据直接从缓存中获取,不会再次向数据库查询数据一个SqlSession拥有一 ...

  5. LVS+Keepalived 配置

    LVS+Keepalived配置 环境准备 LVS1:192.168.1.1 LVS2:192.168.1.2 MySQL Server1:192.168.1.13 MySQL Server2:192 ...

  6. [iOS 开发] WebViewJavascriptBridge 从原理到实战 · Shannon's Blog

    前言:iOS 开发中,h5 和原生实现通信有多种方式, JSBridge 就是最常用的一种,各 JSBridge 类库的实现原理大同小异,这篇文章主要是针对当前使用最为广泛的 WebViewJavas ...

  7. C++走向远洋——64(项目三、数组类模板)

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  8. sql的练习题

    表名和字段 –1.学生表 Student(s_id,s_name,s_birth,s_sex) --学生编号,学生姓名, 出生年月,学生性别 –2.课程表 Course(c_id,c_name,t_i ...

  9. js中如何判断属性是对象实例中的属性还是原型中的属性

    ECMAScript5中的hasOwnProperty()方法,用于判断只在属性存在与对象实例中的时候,返回true,in操作符只要通过对象能访问到属性就返回true. 因此只要in操作符返回true ...

  10. AWS EC2+Docker+JMeter构建分布式负载测试基础架构

    目录 概述及范围 前提条件 Part 1: Local setup-本地配置 Part 2: Cloud端基础架构--Infrastructure 总结: 原文链接 @ 概述及范围 本文介绍有关如何使 ...