Kafka的面试题
1.Kafka的设计是什么样的呢?
Kafka将消息以topic为单位进行归纳
将向Kafka topic发布消息的程序成为producers.
将预订topics并消费消息的程序成为consumer.
Kafka以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker.
producers通过网络将消息发送到Kafka集群,集群向消费者提供消息
2.数据传输的事物定义有哪三种?
数据传输的事务定义通常有以下三种级别:
(1)最多一次: 消息不会被重复发送,最多被传输一次,但也有可能一次不传输
(2)最少一次: 消息不会被漏发送,最少被传输一次,但也有可能被重复传输.
(3)精确的一次(Exactly once): 不会漏传输也不会重复传输,每个消息都传输被一次而且仅仅被传输一次,这是大家所期望的
3.Kafka判断一个节点是否还活着有那两个条件?
(1)节点必须可以维护和ZooKeeper的连接,Zookeeper通过心跳机制检查每个节点的连接
(2)如果节点是个follower,他必须能及时的同步leader的写操作,延时不能太久
4.producer是否直接将数据发送到broker的leader(主节点)?
producer直接将数据发送到broker的leader(主节点),不需要在多个节点进行分发,为了帮助producer做到这点,所有的Kafka节点都可以及时的告知:哪些节点是活动的,目标topic目标分区的leader在哪。这样producer就可以直接将消息发送到目的地了
5、Kafa consumer是否可以消费指定分区消息?
Kafa consumer消费消息时,向broker发出"fetch"请求去消费特定分区的消息,consumer指定消息在日志中的偏移量(offset),就可以消费从这个位置开始的消息,customer拥有了offset的控制权,可以向后回滚去重新消费之前的消息,这是很有意义的
6、Kafka消息是采用Pull模式,还是Push模式?
Kafka最初考虑的问题是,customer应该从brokes拉取消息还是brokers将消息推送到consumer,也就是pull还push。在这方面,Kafka遵循了一种大部分消息系统共同的传统的设计:producer将消息推送到broker,consumer从broker拉取消息
一些消息系统比如Scribe和Apache Flume采用了push模式,将消息推送到下游的consumer。这样做有好处也有坏处:由broker决定消息推送的速率,对于不同消费速率的consumer就不太好处理了。消息系统都致力于让consumer以最大的速率最快速的消费消息,但不幸的是,push模式下,当broker推送的速率远大于consumer消费的速率时,consumer恐怕就要崩溃了。最终Kafka还是选取了传统的pull模式
Pull模式的另外一个好处是consumer可以自主决定是否批量的从broker拉取数据。Push模式必须在不知道下游consumer消费能力和消费策略的情况下决定是立即推送每条消息还是缓存之后批量推送。如果为了避免consumer崩溃而采用较低的推送速率,将可能导致一次只推送较少的消息而造成浪费。Pull模式下,consumer就可以根据自己的消费能力去决定这些策略
Pull有个缺点是,如果broker没有可供消费的消息,将导致consumer不断在循环中轮询,直到新消息到t达。为了避免这点,Kafka有个参数可以让consumer阻塞知道新消息到达(当然也可以阻塞知道消息的数量达到某个特定的量这样就可以批量发
7.Kafka存储在硬盘上的消息格式是什么?
消息由一个固定长度的头部和可变长度的字节数组组成。头部包含了一个版本号和CRC32校验码。
消息长度: 4 bytes (value: 1+4+n)
版本号: 1 byte
CRC校验码: 4 bytes
具体的消息: n bytes
8.Kafka高效文件存储设计特点:
(1).Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用。
(2).通过索引信息可以快速定位message和确定response的最大大小。
(3).通过index元数据全部映射到memory,可以避免segment file的IO磁盘操作。
(4).通过索引文件稀疏存储,可以大幅降低index文件元数据占用空间大小。
9.Kafka 与传统消息系统之间有三个关键区别
(1).Kafka 持久化日志,这些日志可以被重复读取和无限期保留
(2).Kafka 是一个分布式系统:它以集群的方式运行,可以灵活伸缩,在内部通过复制数据提升容错能力和高可用性
(3).Kafka 支持实时的流式处理
10.Kafka创建Topic时如何将分区放置到不同的Broker中
副本因子不能大于 Broker 的个数;
第一个分区(编号为0)的第一个副本放置位置是随机从 brokerList 选择的;
其他分区的第一个副本放置位置相对于第0个分区依次往后移。也就是如果我们有5个 Broker,5个分区,假设第一个分区放在第四个 Broker 上,那么第二个分区将会放在第五个 Broker 上;第三个分区将会放在第一个 Broker 上;第四个分区将会放在第二个 Broker 上,依次类推;
剩余的副本相对于第一个副本放置位置其实是由 nextReplicaShift 决定的,而这个数也是随机产生的
11.Kafka新建的分区会在哪个目录下创建
在启动 Kafka 集群之前,我们需要配置好 log.dirs 参数,其值是 Kafka 数据的存放目录,这个参数可以配置多个目录,目录之间使用逗号分隔,通常这些目录是分布在不同的磁盘上用于提高读写性能。
当然我们也可以配置 log.dir 参数,含义一样。只需要设置其中一个即可。
如果 log.dirs 参数只配置了一个目录,那么分配到各个 Broker 上的分区肯定只能在这个目录下创建文件夹用于存放数据。
但是如果 log.dirs 参数配置了多个目录,那么 Kafka 会在哪个文件夹中创建分区目录呢?答案是:Kafka 会在含有分区目录最少的文件夹中创建新的分区目录,分区目录名为 Topic名+分区ID。注意,是分区文件夹总数最少的目录,而不是磁盘使用量最少的目录!也就是说,如果你给 log.dirs 参数新增了一个新的磁盘,新的分区目录肯定是先在这个新的磁盘上创建直到这个新的磁盘目录拥有的分区目录不是最少为止。
12.partition的数据如何保存到硬盘
topic中的多个partition以文件夹的形式保存到broker,每个分区序号从0递增,
且消息有序
Partition文件下有多个segment(xxx.index,xxx.log)
segment 文件里的 大小和配置文件大小一致可以根据要求修改 默认为1g
如果大小大于1g时,会滚动一个新的segment并且以上一个segment最后一条消息的偏移量命名
13.kafka的ack机制
request.required.acks有三个值 0 1 -1
0:生产者不会等待broker的ack,这个延迟最低但是存储的保证最弱当server挂掉的时候就会丢数据
1:服务端会等待ack值 leader副本确认接收到消息后发送ack但是如果leader挂掉后他不确保是否复制完成新leader也会导致数据丢失
-1:同样在1的基础上 服务端会等所有的follower的副本受到数据后才会受到leader发出的ack,这样数据不会丢失
14.Kafka的消费者如何消费数据
消费者每次消费数据的时候,消费者都会记录消费的物理偏移量(offset)的位置
等到下次消费时,他会接着上次位置继续消费
15.消费者负载均衡策略
一个消费者组中的一个分片对应一个消费者成员,他能保证每个消费者成员都能访问,如果组中成员太多会有空闲的成员
16.数据有序
一个消费者组里它的内部是有序的
消费者组与消费者组之间是无序的
17.kafaka生产数据时数据的分组策略
生产者决定数据产生到集群的哪个partition中
每一条消息都是以(key,value)格式
Key是由生产者发送数据传入
所以生产者(key)决定了数据产生到集群的哪个partition
Kafka的面试题的更多相关文章
- 18道kafka高频面试题哪些你还不会?(含答案和思维导图)
前言 Kafka是最初由Linkedin公司开发,是一个分布式.支持分区的(partition).多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实时的处 ...
- kafka常见面试题
1.Kafka 中的 ISR(InSyncRepli).OSR(OutSyncRepli).AR(AllRepli)代表什么? 1.AR = ISR+OSR ISR: kafka 使用多副本来保证消息 ...
- 大数据相关技术原理资料整理(hdfs, spark, hbase, kafka, zookeeper, redis, hive, flink, k8s, OpenTSDB, InfluxDB, yarn)
hdfs: hdfs官方文档 深入理解HDFS的架构和原理 https://blog.csdn.net/kezhong_wxl/article/details/76573901 HDFS原理解析(总体 ...
- 2020年大厂Java面试前复习的正确姿势(800+面试题附答案解析)
前言 个人觉得面试也像是一场全新的征程,失败和胜利都是平常之事.所以,劝各位不要因为面试失败而灰心. 丧失斗志.也不要因为面试通过而沾沾自喜,等待你的将是更美好的未来,继续加油! 本篇分享的面试题内容 ...
- 四万字32图,Kafka知识体系保姆级教程宝典
本文目录: 一.消息队列 Apache Pulsar Pulsar 与 Kafka 对比 二.Kafka基础 三.Kafka架构及组件 四.Kafka集群操作 五.Kafka的JavaAPI操作 六. ...
- 14个最常见的Kafka面试题及答案【转】
原创 IT168企业级 2017-08-21 17:40 本文为您盘点了14个最常见的Kafka面试题,同时也是对Apache Kafka初学者必备知识点的一个整理与介绍. 1.请说明什么是Apach ...
- 大数据相关的面试题(摘自网络)hbase,kafka,spark
1.讲讲你做的过的项目, 项目里有哪些难点重点呢? kafkaDirect ES /hive kafka producer 难点值得一提的有两点: 1.rdd中用到外部变量的时候如何处 ...
- 消息中间件面试题31道RabbitMQ+ActiveMQ+Kafka
消息中间件面试题31道RabbitMQ+ActiveMQ+Kafka 前言 文章开始前,我们先了解一下什么是消息中间件? 什么是中间件? 非底层操作系统软件,非业务应用软件,不是直接给最终用户使用的, ...
- BATJ高级Java面试题分享:JVM+Redis+Kafka +数据库+设计模式
话不多说,直接上面试题,来看一下你还欠缺多少? Mysql 与 Oracle 相比, Mysql 有什么优势? 简洁描述 Mysql 中 InnoDB 支持的四种事务隔离级别名称,以及逐级之间的区别? ...
随机推荐
- Chrome 调试 react-native 通过Network面板查看网络请求
参考 https://github.com/facebook/react-native/issues/934 三楼 真机或模拟器下 Debug JS Remotely, 会打开chrome,地址为ip ...
- rpm报错warning: /var/tmp/rpm-tmp.1OZa8q: Header V3 DSA/SHA1 Signature, key ID 5072e1f5: NOKEY的解决
参考链接:http://blog.51cto.com/zymin0823/1546537 报错: 解决:使用如下两个选项
- MySQL树形结构的数据库表设计和查询
1.邻接表(Adjacency List) 实例:现在有一个要存储一下公司的人员结构,大致层次结构如下: 那么怎么存储这个结构?并且要获取以下信息: 1.查询小天的直接上司. 2.查询老宋管理下的直属 ...
- kibana增加验证
Kibana从5.5开始不提供认证功能,想用官方的认证X-Pack收费 ... 自己动手吧,用nginx的代理加apache生成的密码认证文件.环境:ubuntu16.04 安装nginxapt-ge ...
- Selenium&Pytesseract模拟登录+验证码识别
验证码是爬虫需要解决的问题,因为很多网站的数据是需要登录成功后才可以获取的. 验证码识别,即图片识别,很多人都有误区,觉得这是爬虫方面的知识,其实是不对的. 验证码识别涉及到的知识:人工智能,模式识别 ...
- ES6学习笔记之变量的解构赋值
变量的解构赋值 ES6允许按照一定模式,从数组和对象中提取值,对变量进行赋值,这被称为解构. 数组的解构赋值 以前,为变量赋值,只能直接指定值: 1 2 3 var a = 1; var b = 2; ...
- spring入门-整合junit和web
整合Junit 导入jar包 基本 :4+1 测试:spring-test-5.1.3.RELEASE.jar 让Junit通知spring加载配置文件 让spring容器自动进行注入 1234567 ...
- epoll的原理和用法
设想一个场景,有100万用户同时与一个进程保持着TCP连接,而每一时刻只有几十个或几百个TCP连接是活跃的(接收到TCP包)也就是说,在每一时刻进程只需要处理这100万连接中的一小部分连接,那么,如何 ...
- Nginx设置目录浏览并配置验证
Nginx默认是不允许进行列目录的,如果需要使某个目录可以进行浏览,可如下设置:如: 让/var/www/soft 这个目录在浏览器中完成列出. 一.设置目录浏览1.打开/usr/local/ngin ...
- C++扬帆远航——15(项目二,太乐了)
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:tailezhanshi.cpp * 作者:常轩 * 微信公众号 ...