There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S​3​​, we have 2 different shortest paths:

  1. PBMC -> S​1​​ -> S​3​​. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S​1​​ and then take 5 bikes to S​3​​, so that both stations will be in perfect conditions.

  2. PBMC -> S​2​​ -> S​3​​. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: C​max​​ (≤), always an even number, is the maximum capacity of each station; N (≤), the total number of stations; S​p​​, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers C​i​​ (,) where each C​i​​ is the current number of bikes at S​i​​ respectively. Then M lines follow, each contains 3 numbers: S​i​​, S​j​​, and T​ij​​ which describe the time T​ij​​ taken to move betwen stations S​i​​ and S​j​​. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of S​p​​ is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0

题目分析:用Dijkstra算法求解后不对 看了柳神的博客才知道要使用dijkstra与dfs结合的方式
因为minneed和minback在求解过程中不满足最优子结构 换言之 无法在求解过程中就知道那条路是最优的,因此,将最短路径求出后在利用dfs进行遍历判断最优解
 #define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
#define INIFITY 65535
using namespace std;
int g[][];
int dist[];
int collected[];
int weight[];
int minNeed = INIFITY;
int minBack = INIFITY;
vector<int> pre[], path, tempath;
int C, N, D, M;
void dfs(int v){
tempath.push_back(v);
if (v == ) {
int need = ;
int back = ;
for (int i = tempath.size()-; i>=; i--){
int id = tempath[i];
if (weight[id] > )
back += weight[id];
else if (back>(-weight[id]))
back += weight[id];
else{
need+= ( - weight[id]) - back;
back = ;
}
}
if (need < minNeed){
minNeed = need;
minBack = back;
path = tempath;
}
else if (need == minNeed && back < minBack){
minBack=back;
path = tempath;
}
tempath.pop_back();
return;
}
for (int i = ; i<pre[v].size(); i++)
dfs(pre[v][i]);
tempath.pop_back();
}
int main()
{
fill(g[], g[] + * , INIFITY);
fill(dist, dist + , INIFITY);
cin >> C >> N >> D >> M;
for (int i = ; i <=N; i++)
{
int w;
cin >> w;
weight[i] = w - C / ;
}
for (int i = ; i < M; i++){
int v1, v2, length;
cin >> v1 >> v2 >> length;
g[v1][v2]=g[v2][v1]= length;
}
//Dijkstra
dist[] = ;
for (int i = ; i <= N; i++){
int Min = INIFITY;
int Minp = -;
for (int v = ; v <= N; v++){
if (!collected[v]&&dist[v] < Min){
Min = dist[v];
Minp = v;
}
}
collected[Minp] = ;
for (int u = ; u <= N; u++){
if(!collected[u]&&g[Minp][u]!=INIFITY)
if (dist[Minp] + g[Minp][u] < dist[u]){
dist[u] = dist[Minp] + g[Minp][u];
pre[u].clear();
pre[u].push_back(Minp);
}
else if (dist[u] == dist[Minp] + g[Minp][u])
pre[u].push_back(Minp);
}
}
dfs(D);
cout << minNeed << "";
for (int i = path.size() - ; i >= ; i--)
cout << "->" << path[i];
cout << " " << minBack;
return ;
}

1018 Public Bike Management (30 分)的更多相关文章

  1. PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs,dfs记录路径,做了两天)

    1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides ...

  2. 1018 Public Bike Management (30分) 思路分析 + 满分代码

    题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...

  3. 1018 Public Bike Management (30分) PAT甲级真题 dijkstra + dfs

    前言: 本题是我在浏览了柳神的代码后,记下的一次半转载式笔记,不经感叹柳神的强大orz,这里给出柳神的题解地址:https://blog.csdn.net/liuchuo/article/detail ...

  4. 1018 Public Bike Management (30分) (迪杰斯特拉+dfs)

    思路就是dijkstra找出最短路,dfs比较每一个最短路. dijkstra可以找出每个点的前一个点, 所以dfs搜索比较的时候怎么处理携带和带走的数量就是关键,考虑到这个携带和带走和路径顺序有关, ...

  5. 【PAT甲级】1018 Public Bike Management (30 分)(SPFA,DFS)

    题意: 输入四个正整数C,N,S,M(c<=100,n<=500),分别表示每个自行车站的最大容量,车站个数,此次行动的终点站以及接下来的M行输入即通路.接下来输入一行N个正整数表示每个自 ...

  6. 1018 Public Bike Management (30)(30 分)

    时间限制400 ms 内存限制65536 kB 代码长度限制16000 B There is a public bike service in Hangzhou City which provides ...

  7. 1018. Public Bike Management (30)

    时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service i ...

  8. PAT Advanced 1018 Public Bike Management (30) [Dijkstra算法 + DFS]

    题目 There is a public bike service in Hangzhou City which provides great convenience to the tourists ...

  9. PAT A 1018. Public Bike Management (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1018 先用Dijkstra算出最短路,然后二分答案来验证,顺便求出剩余最小,然后再从终点dfs回去求出路 ...

随机推荐

  1. 手写Promise原理

    我的promise能实现什么? 1:解决回调地狱,实现异步 2:可以链式调用,可以嵌套调用 3:有等待态到成功态的方法,有等待态到失败态的方法 4:可以衍生出周边的方法,如Promise.resolv ...

  2. [项目分享]JSP+Servlet+JDBC实现的学生信息管理系统

    本文存在视频版本,请知悉 项目简介 项目来源于:https://gitee.com/liu_xu111/JavaWeb01 这次分享一个学生管理系统,我感觉这是程序员在大学时期的毕设和课程设计选择最多 ...

  3. 通过xshell远程部署

    Xshell 和 Xftp5 操作linux系统的机器 ------------------------------------------------------------------------ ...

  4. 欲善事先利器-IEAD插件篇

    工欲善其事,必先利其器,好鞋踢好球是非常合乎逻辑的事情. --<长江七号> 同样的开场白,不一样的酒,不一样的故事. 上篇<欲善事先利器--系统篇>已经推荐了一些个人常用的效率 ...

  5. IdentityServer4源码解析_1_项目结构

    目录 IdentityServer4源码解析_1_项目结构 IdentityServer4源码解析_2_元数据接口 IdentityServer4源码解析_3_认证接口 IdentityServer4 ...

  6. linux环境下的时间编程

    Linux下提供了丰富的api以供开发者们处理和时间相关的问题.然而这些接口看似各自为政实则有有着千丝万缕的联系,在学习和时间中引发了各种各样的混乱.因此时间处理成为了许多Linux开发者的梦魇,遇到 ...

  7. 嵌入式LCD闪烁--emWin使用内存设备避免闪烁

    0.引子 近日在论坛看到有人说屏幕闪烁,问道怎么解决.在嵌入式gui使用方面,屏幕闪烁一般多出现在多个窗口层叠.多图层层叠.更新图层时.受限于接口速度,即使屏幕有很高的刷新率,也做不到无闪烁,所以要从 ...

  8. OFD电子证照模版制作工具使用说明

    每一类电子证照都具有相同板式,不同的电子证照之间只是文字.图片的差异.生成电子证照常用的方式就是采用模版批量生成. 本软件可以方便的设计证照模版.服务端根据模版生成电子证照,不同种类的电子证照生成逻辑 ...

  9. Chrome EC框架探索_0.0_引言

    0.0 引言 嵌入式硬件抽象框架常常面临着这样的尴尬:封装层次较高的(arduino,mbed)不能充分暴露必要的API并面临着性能问题,封装层次较低的(HAL,LL)接口复杂且开发困难.近日发现的一 ...

  10. ArrayList的传值问题

    ArrayList是一个对象类型,记录一下遇到的传值问题 假设两个ArrayList类型的值a和b,a有值,b无值,想把a的值全部复制给b. 如果使用 b = a; 进行赋值,会将a的地址赋值给b,当 ...