4.4 Linear Correlation

若由SxxSyySxy定义则为:

所以为了计算方便:

所以,可以明白的是,Sxx和Sx是不一样的!

所以,t r is independent of the choice of units and always lies between −1 and 1

Understanding the Linear Correlation Coefficient

measures the strength of the linear relationship between two variables and that the following properties of r are meaningful only when the data points are scattered about a line.

r reflflects the slope of the scatterplot

如图,若scatterplot为正向分布(平均看来,虽然有2,4可能存在值)即positively linearly correlated正相关,,则point必在1,3区域;则Sxy必为正,则r值为正。若scatterplot为负向分布,则point必在2,4区域;则Sxy必为负,则r值为负,即negatively linearly correlated(负相关)。

原因:

则r与b1同号,所以

The magnitude of r indicates the strength of the linear relationship

. A value of r close to −1 or to 1 indicates a strong linear relationship between the variables and that the variable x is a good linear predictor of the variable y

所以,绝对值大证明相关程度高,相关程度高则证明拟合直线的拟合成果好

以下是一些拟合直线和散点图的例子:

使用Linear Correlation Coefficient必须保证数据线性(即分布在一条直线上)

Noted:Correlation does not imply causation!

而对于密切相关的变量之间的关系的成因,可以理解为:Two variables may be strongly correlated because they are both associated with other variables, called lurking variables,For example, a study showed that teachers’ salaries and the dollar amount of liquor sales are positively linearly correlated. A possible explanation for this curious fact might be that both variables are tied to other variables, such as the rate of inflflation, that pull them along together.即有密切关联的两个变量,这两个变量若毫无联系,则可能是因为这两个变量之间的某些中间变量将其联系起来。

 

linear correlation coefficient|Correlation and Causation|lurking variables的更多相关文章

  1. [Statistics] Comparison of Three Correlation Coefficient: Pearson, Kendall, Spearman

    There are three popular metrics to measure the correlation between two random variables: Pearson's c ...

  2. 皮尔逊相关系数与余弦相似度(Pearson Correlation Coefficient & Cosine Similarity)

    之前<皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)>一文介绍了皮尔逊相关系数.那么,皮尔逊相关系数(Pearson Corre ...

  3. 皮尔逊相关系数(Pearson Correlation Coefficient, Pearson's r)

    Pearson's r,称为皮尔逊相关系数(Pearson correlation coefficient),用来反映两个随机变量之间的线性相关程度. 用于总体(population)时记作ρ (rh ...

  4. 斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. Pearson product-moment correlation coefficient in java(java的简单相关系数算法)

    一.什么是Pearson product-moment correlation coefficient(简单相关系数)? 相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变 ...

  6. 【ML基础】皮尔森相关系数(Pearson correlation coefficient)

    前言 参考 1. 皮尔森相关系数(Pearson correlation coefficient): 完

  7. PCC值average pearson correlation coefficient计算方法

    1.先找到task paradise 的m1-m6: 2.根据公式Dy=D1* 1/P*∑aT ,例如 D :t*k1   a:k2*k1: Dy :t*k2 Dy应该有k2个原子,维度是t: 3.依 ...

  8. 相关系数(CORRELATION COEFFICIENTS)会骗人?

    CORRELATION COEFFICIENTS We've discussed how to summarize a single variable. The next question is ho ...

  9. Correlation and Regression

    Correlation and Regression Sample Covariance The covariance between two random variables is a statis ...

随机推荐

  1. choice接口、同花顺使用

    一 choice接口使用 1.choice软件-->量化-->下载中心,下载python接口文件 EMQuantAPI_Python 2.要先绑定手机号,绑定后账户权限不够,暂时放弃. 二 ...

  2. jQuery.ajax提交JSON数据

    $.ajax({ type: 'POST', url: "URL", contentType:'application/json', //需要加contentType crossD ...

  3. QMainWindow的空间布局结构

    简单讲一下Qt的QMainWindow的结构,Qt的顶级窗口有三种类型,首先是万恶之源(...应该说是大部分控件的父类...)的QWidget,然后是QMainWidget和QDialog,后面两者也 ...

  4. rabbitmq安装及简单demo练习

    参考:https://my.oschina.net/loveorange/blog/3026473 安装参考链接: 1. 下载自己需要的rabbitmq_server(http://www.rabbi ...

  5. github访问过慢解决

    为了更加愉快地使用全球最大同性交友网站上的优质资源,我们来做一些简单的本机上的调整. 通过查看下载链接,能够发现最终被指向到Amazon的服务器(http://github-cloud.s3.amaz ...

  6. Microsoft SQL server Management Studio工具报错“应用程序的组件中发生了无法处理的异常”

    解决办法 打开目录: C:\Documents and Settings\Administrator\Application Data\Microsoft\Microsoft SQL Server\1 ...

  7. gulp 学习入门

    const gulp = require('gulp'); const less = require('gulp-less') // 定义任务 gulp.task('helloGulp',functi ...

  8. MySQL性能管理及架构设计:第1章 实例和故事

    1-1 什么决定了电商双11大促的成败 数据库架构 1-2 在双11大促中的数据库服务器 通过监控信息从而确定:哪些因素影响了数据库性能? 1-3 在大促中什么影响了数据库性能 1-4 大表带来的问题 ...

  9. Python语言基础与应用 (P23)上机练习:容器类型操作(未完待续)

    上机练习:容器类型操作〉 列表.元组基本操作+, *, len(), [], in Python 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 ...

  10. GaussDB数据dump实现完全同步

    问题背景:搭建服务后端容灾集群,服务正常时容灾DB需要从业务DB完全同步数据,服务异常时,容灾DB停止抽取数据,自动从探针采集业务数据. 解决方案:常用的有两种思路,一是从服务后端定时每天拉取业务DB ...