题目描述

农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。

John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:

一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

            (15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)

【请将以上图符复制到记事本中以求更好的观看效果,下同】

这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。

这里是另一个牧场:

                     *F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)

在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。

注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。

输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵



  A B C D E F G H

A 0 1 0 0 0 0 0 0

B 1 0 1 1 1 0 0 0

C 0 1 0 0 1 0 0 0

D 0 1 0 0 1 0 0 0

E 0 1 1 1 0 0 0 0

F 0 0 0 0 0 0 1 0

G 0 0 0 0 0 1 0 1

H 0 0 0 0 0 0 1 0

其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。

输入文件至少包括两个不连通的牧区。

请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。

输入输出格式

输入格式:

第1行: 一个整数N (1 <= N <= 150), 表示牧区数

第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。

第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。

输出格式:

只有一行,包括一个实数,表示所求直径。数字保留六位小数。

只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。

输入输出样例

输入样例#1:

8

10 10

15 10

20 10

15 15

20 15

30 15

25 10

30 10

01000000

10111000

01001000

01001000

01110000

00000010

00000101

00000010

输出样例#1:

22.071068

说明

翻译来自NOCOW

USACO 2.4

先用floyd求一边最短路,再找出没一点与他最远点的距离,再通过连接不相接的点来松弛最远点的距离,最后一一比较的出答案。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
const int maxn=150+10;
const int inf=0x3f3f3f3f;
struct node
{
int x;
int y;
}a[maxn];
double cal(int i,int j)
{
return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}
int n;
double dis[maxn][maxn],ldis[maxn],l1,l2=inf,ans;
int main()
{
int tmp;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%1d",&tmp);
if(tmp)dis[i][j]=cal(i,j);
else if(i!=j)dis[i][j]=inf;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dis[i][k]+dis[k][j]<dis[i][j])
dis[i][j]=dis[i][k]+dis[k][j];//首先Floyd求一遍最短路径,标准五行代码
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(dis[i][j]!=inf)ldis[i]=max(dis[i][j],ldis[i]);//这个事求每一个点距离它最远的点的距离
l1=max(l1,ldis[i]);//这个是牧区目前的最大直径
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dis[i][j]==inf)
l2=min(ldis[i]+cal(i,j)+ldis[j],l2);//枚举两个不连通的点,然后就可以计算新的牧区的直径
ans=max(l1,l2);//因为有可能新联通的牧场还没有原来的牧场大,所以还要再取一遍最大值
printf("%.6f",ans);
return 0;
}

P1522 牛的旅行 Cow Tours(floyd)的更多相关文章

  1. 洛谷 - P1522 - 牛的旅行 - Cow Tours - Floyd

    https://www.luogu.org/problem/P1522 好坑啊,居然还有直径不通过新边的数据,还好不是很多. 注意一定要等Floyd跑完之后再去找连通块的直径,不然一定是INF. #i ...

  2. 洛谷P1522 牛的旅行 Cow Tours

    ---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...

  3. 洛谷 P1522 牛的旅行 Cow Tours 题解

    P1522 牛的旅行 Cow Tours 题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不 ...

  4. 洛谷 P1522 牛的旅行 Cow Tours

    题目链接:https://www.luogu.org/problem/P1522 思路:编号,然后跑floyd,这是很清楚的.然后记录每个点在这个联通块中的最远距离. 然后分连通块,枚举两个点(不属于 ...

  5. P1522 牛的旅行 Cow Tours floyed

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  6. 洛谷 P1522 牛的旅行 Cow Tours——暴力枚举+最短路

    先上一波题目  https://www.luogu.org/problem/P1522 这道题其实就是给你几个相互独立的连通图 问找一条新的路把其中的两个连通图连接起来后使得新的图中距离最远的两个点之 ...

  7. Luogu P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  8. P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  9. 洛谷P1522 [USACO2.4]牛的旅行 Cow Tours

    洛谷P1522 [USACO2.4]牛的旅行 Cow Tours 题意: 给出一些牧区的坐标,以及一个用邻接矩阵表示的牧区之间图.如果两个牧区之间有路存在那么这条路的长度就是两个牧区之间的欧几里得距离 ...

随机推荐

  1. MTK Android Framework用SystemProperties通过JNI调用访问系统属性

    1.导包 import android.os.SystemProperties; 2. Android SystemProperties设置/读取 #设置 Systemproperties.set(n ...

  2. Java第四天,随机数如何生成?ArrayList如何使用?

    虽然很多时候我们查阅Java API文档,但是对于一些必要的类,我们还是需要去了解的.因为这样的情况下,我们就可以尽量的去缩短开发的周期.接下来我们认识一下哪些API类是必须熟记的. Random 这 ...

  3. python3(三十三)debug

    """ 调试 """ __author__on__ = 'shaozhiqi 2019/9/23' # 调试程序 # . print打印,没 ...

  4. 字典树&&AC自动机---看完大概应该懂了吧。。。。

    目录 字典树 AC自动机 字典树 又称单词查找树,Trie树,是一种树形结构,是一种哈希树的变种.典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计 ...

  5. list 的sublist 隐藏 bug

    list A = new list(); list a = A.sublist(0,3); 假如对a进行增加或者删除 会 同样改变A里的值,即其实a仅仅是A的一个试图,而不是一个新的list 对象,所 ...

  6. 如何配置多个Spring的xml配置文件(多模块配置)

    如何使用多个Spring的xml配置文件(多模块配置) (2009-08-22 13:42:43)   如何使用多个Spring的xml配置文件(多模块配置) 在用Struts Spring Hibe ...

  7. Python财经数据接口包TuShare的使用

    安装TuShare 方式1:pip install tushare 方式2:访问https://pypi.python.org/pypi/tushare/下载安装 方式3:将源代码下载到本地pytho ...

  8. python初学(一)

    1.输入一个百分制成绩,要求输出成绩等级A.B.C.D.E,其中90~100分为A,80~89分为B,70~79分为C,60~69分为D,60分以下为E. 要求:1)用if语句实现:2)输入百分制成绩 ...

  9. 【Java】Junit单元测试

    什么是单元测试? 单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证. 对于单元测试中单元的含义,一般来说,要根据实际情况去判定其具体含义,如C语言中单元指一个函数,Ja ...

  10. Jquery+php鼠标滚动到页面底部自动加载更多内容,使用分页

    1.index.php <style type="text/css"> #container{margin:10px auto;width: 660px; border ...