pandas入门(一):pandas的安装和创建
pandas
对于数据分析的人员来说都是必须熟悉的第三方库,pandas
在科学计算上有很大的优势,特别是对于数据分析人员来说,相当的重要。python中有了Numpy
,但是Numpy
还是比较数学化,还需要有一种库能够更加具体的代表数据模型,我们都非常的清楚在数据处理中EXCEL
扮演着非常重要的作用,表格的模式是数据模型最好的一种展现形式。
pandas
是对表格数据模型在python上的模拟,它有简单的像SQL
对数据的处理,能够方便的在python上实现。
pandas 的安装
pandas
在python上的安装同样的使用pip
进行:
pip install pandas
pandas 创建对象
pandas
有两种数据结构:Series
和 DataFrame
。
Series
Series
像python中的数据list
一样,每个数据都有自己的索引。从list
创建 Series
。
>>> import pandas as pd
>>> s1 = pd.Series([100,23,'bugingcode'])
>>> s1
0 100
1 23
2 bugingcode
dtype: object
>>>
在Series
中添加相应的索引:
>>> import numpy as np
>>> ts = pd.Series(np.random.randn(365), index=np.arange(1,366))
>>> ts
在index中设置索引值是一个从1到366的值。
Series
的数据结构最像的是python中的字典,从字典中创建Series
:
sd = {'xiaoming':14,'tom':15,'john':13}
s4 = pd.Series(sd)
这时候可以看到Series
已经是自带索引index。
pandas
本身跟 python的另外一个第三方库Matplotlib
有很多的连接,Matplotlib
一个最经常用到的是用来展示数据的,如果还对Matplotlib
不了解的话,后面的章节会进行介绍,现在先拿过来直接用下,如果还没有安装的话,一样的用pip
命令安装 pip install Matplotlib
, 展示如下数据:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
ts = pd.Series(np.random.randn(365), index=np.arange(1,366))
ts.plot()
plt.show()
一个不规则的图形,在数据分析中,时间是一个重要的特性,因为很多数据都是跟时间是有关系的,销售额跟时间有关系,天气跟时间有关系。。。,在pandas
中也提供了关于时间的一些函数,使用date_range
生成一系列时间。
>>> pd.date_range('01/01/2017',periods=365)
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
'2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
'2017-01-09', '2017-01-10',
...
'2017-12-22', '2017-12-23', '2017-12-24', '2017-12-25',
'2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29',
'2017-12-30', '2017-12-31'],
dtype='datetime64[ns]', length=365, freq='D')
>>>
之前我们的图形不规则,有一个原因是数据不是连续的,使用cumsum
让数据连续:
如下:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
ts = pd.Series(np.random.randn(365), index=pd.date_range('01/01/2017',periods=365))
ts = ts.cumsum()
ts.plot()
plt.show()
DataFrame
DataFrame
相当于Series
一维的一个扩展,是一种二维的数据模型,相当于EXcel表格中的数据,有横竖两种坐标,横轴很Series
一样使用index,竖轴用columns 来确定,在建立DataFrame
对象的时候,需要确定三个元素:数据,横轴,竖轴。
df = pd.DataFrame(np.random.randn(8,6), index=pd.date_range('01/01/2018',periods=8),columns=list('ABCDEF'))
print df
数据如下:
A B C D E F
2018-01-01 0.712636 0.546680 -0.847866 -0.629005 2.152686 0.563907
2018-01-02 -1.292799 1.122098 0.743293 0.656412 0.989738 2.468200
2018-01-03 1.762894 0.783614 -0.301468 0.289608 -0.780844 0.873074
2018-01-04 -0.818066 1.629542 -0.595451 0.910141 0.160980 0.306660
2018-01-05 2.008658 0.456592 -0.839597 1.615013 0.718422 -0.564584
2018-01-06 0.480893 0.724015 -1.076434 -0.253731 0.337147 -0.028212
2018-01-07 -0.672501 0.739550 -1.316094 1.118234 -1.456680 -0.601890
2018-01-08 -1.028436 -1.036542 -0.459044 1.321962 -0.198338 -1.034822
在数据分析的过程中,很常见的一种情况是数据直接从excel
或者cvs
过来,可以excel
中读取数据到DataFrame
,数据在 DataFrame
中进行处理:
df = pd.read_excel('data.xlsx',sheet_name= 'Sheet1')
print df
同样的有保存数据到excel
中 to_excel
。
处理cvs数据的函数是:read_cvs
和 to_cvs
,处理HDF5的函数为 read_hdf
和 to_hdf
。
访问DataFrame
可以跟二位数组一样的访问方式:
print df['A']
带出横轴标签:
2018-01-01 0.712636
2018-01-02 -1.292799
2018-01-03 1.762894
2018-01-04 -0.818066
2018-01-05 2.008658
2018-01-06 0.480893
2018-01-07 -0.672501
2018-01-08 -1.028436
同样的可以指定某一个元素:
print df['A']['2018-01-01']
对数组进行切片出来,认清横轴和纵轴:
>>> import pandas as pd
>>> df = pd.read_excel('data.xlsx',sheet_name= 'Sheet1')
>>> df[:][0:3]
A B C D E F
2018-01-01 0.712636 0.546680 -0.847866 -0.629005 2.152686 0.563907
2018-01-02 -1.292799 1.122098 0.743293 0.656412 0.989738 2.468200
2018-01-03 1.762894 0.783614 -0.301468 0.289608 -0.780844 0.873074
>>>
DataFrame
涉及的较多的函数,接下来会有更多的介绍。
更多教程:大家来编程
pandas入门(一):pandas的安装和创建的更多相关文章
- 03慕课网《vue.js2.5入门》——Vue-cli的安装,创建webpack模板项目
安装Vue-cli 第一种 貌似不可以,然后用了第二种,但是重装系统后,第二种不能用了,用了第一种可以 # 全局安装vue -cli命令npm install --global vue-cli # 创 ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- 程序员用于机器学习编程的Python 数据处理库 pandas 入门教程
入门介绍 pandas适合于许多不同类型的数据,包括: · 具有异构类型列的表格数据,例如SQL表格或Excel数据 · 有序和无序(不一定是固定频率)时间序列数据. · 具有行列标签的任意矩阵数据( ...
- 利用Python进行数据分析——pandas入门
利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 ...
- Python数据分析之pandas入门
一.pandas库简介 pandas是一个专门用于数据分析的开源Python库,目前很多使用Python分析数据的专业人员都将pandas作为基础工具来使用.pandas是以Numpy作为基础来设计开 ...
- Python数据分析入门之pandas基础总结
Pandas--"大熊猫"基础 Series Series: pandas的长枪(数据表中的一列或一行,观测向量,一维数组...) Series1 = pd.Series(np.r ...
- 利用python进行数据分析之pandas入门
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5. ...
- pandas入门指南
上一篇讲了numpy,除此之外,还有一个工具我们一定会使用,那就是pandas.如果说numpy中数据存储形式是列表的话,那么pandas中数据的存储形式更像是字典.为什么这么说呢?因为pandas中 ...
- 第十章、jupyter入门之pandas
目录 第十章.jupyter入门之pandas 一.什么是pandas 二.Series 三.基本概念 四.基本运算 五.DataFrame 第十章.jupyter入门之pandas 一.什么是pan ...
随机推荐
- pip anaconda 添加国内镜像
源地址 官方默认镜像太慢.换成国内源比较快.几个源的地址: 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun. ...
- MySQL——事务(transaction)简单总结
简介: MySQL事务操作主要用于处理操作量大,复杂度高的数据,比如说,在人员管理系统中要删除一个人员,你既要删除他的基本资料,也要删除该人员的相关信息,如文章.信箱等.这些数据库操作语句就构成了一个 ...
- python代码实现购物车(django的redis与vue)
安装模块 pip install django-redis 后端代码 # 购物车 class CartView(APIView): # 初始化函数 def __init__(self): self.c ...
- PyTorch基础——词向量(Word Vector)技术
一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现 ...
- python学习——list
list 序列是Python中最基本的数据结构.序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推.Python有6个序列的内置类型,但最常见的是列表和元组 ...
- 吴裕雄--天生自然C语言开发:enum(枚举)
enum DAY { MON=, TUE, WED, THU, FRI, SAT, SUN }; enum DAY { MON=, TUE, WED, THU, FRI, SAT, SUN }; en ...
- Linux磁盘空间满的诡异问题解决方案
问题描述: 今天登上一台服务器,df -h 发面根目录磁盘已经满了 解决过程: cd / du -sh * 发现并没有大文件,占用的空间没多大 根据经验,先通过lsof | grep deleted ...
- HttpClient的userAgent和refer问题
HttpClient本质是模拟浏览器去请求网址,获取请求response. 为了更真实的模拟浏览器,不被限制,需要设置一些请求header. 如果是爬虫的话,老虑的会更多些,爬取网站在HttpClie ...
- 《运筹学基础及应用》习题1.1(b),1.1(c),1.2(a)
用图解法求解下列线性规划问题,并指出问题具有惟一最优解,无穷多最优解,无界解还是无可行解. 习题1.1(b):$\max z=3x_1+2x_2$$$s.t\begin{cases} 2x_1+x_ ...
- iOS UICollectionViewCell 的拖动
1.长按cell的情况下实现拖动,所以理应想到用长按手势. 2.既然实现移动cell,就要看看UICollectionView 有没有方法或者协议可以移动的.通过查看UICollectionView的 ...