一般的,一颗决策树包含一个根结点、若干内部结点和若干叶结点;叶节点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到每个叶子结点的路径对应了一个判定测试序列。决策树学习的目的是为了产生一颗泛化能力强,即处理位见示例能力强的决策树,其基本流程遵循简单且直观的“分而支之”策略:

在决策树算法中,有3种情况会导致递归返回:

  • 当前节点包含的样本属于同一类,无需划分
  • 当前节点属性集为空,或是所有样本在所有属性上取值相同,无法划分
  • 当前节点包含的样本集合为空,不能划分

划分选择:

1. information gain 信息增益  $a_{\star} = \arg\max\limits_{a\in{A}} Gain(D, a)$

information entropy信息熵是度量样本集合纯度最常用的指标。假定当前样本集合$D$中第$k$类样本所占比例为$p_k(k=1,2,...,\lvert{y}\rvert)$,则$D$的information entropy是

$Ent(D) = - \sum_{k=1}^{\lvert{y}\rvert}p_klog_2^{p_k}$

$Ent(D)$的值越小,则$D$的纯度越高

那么对于$D$的各个结点$D_v$,我们可以算出$D_v$的information entropy,再考虑到不同的分支结点所包含的样本数不均匀,给分支赋予权重$\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}$,这样得到information gain:

$Gain(D,a_{\star}) = Ent(D) - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}Ent(D_v)$

一般来说 infoermation gain 越大,意味着使用属性$a$ 来进行划分所得“纯度提升”越大。这种分裂方式对于可取值数目较多的属性有所偏好。

2. gain ratio 增益比  $a_{\star} = \arg\max\limits_{a\in{A}} Gain\_ratio(D, a)$

$Gain\_ratio(D, a) = \frac{ Gain(D, a)}{IV(a)}$

$IV(a) = - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}log_2{\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}}$

需要注意的是:实际使用gain ratio时:先从候选划分属性中找到信息增益高于平均水平的属性,再从中选择增益比最高的。这种分裂方式对可取值数目较少的属性有所偏好.

3. CART Gini index基尼指数  $a_{\star} = \arg\min\limits_{a\in{A}} Gini\_index\_ratio(D, a)$

$Gini(D) = \sum_{k=1}^{\lvert{y}\rvert} \sum_{k^{,}\neq{k}}p_kp_{k^{,}} = 1-\sum_{k=1}^{\lvert{y}\rvert}p_k^2$

$Gini\_index(D,a) = \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{D}Gini(D_v)$

CART与传统DT相比,分裂中只有两个结点。

4. Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

  10. (转)Decision Tree

    Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...

随机推荐

  1. 全选、取消、2级 checkbox的选中切换

    需求:点击父级checkbox的时候,子级出现全选或全取消:点击子级时,如:子级都是在未选中时,点击某一个子级,则父级选中:如:子级中只有一个选中状态(其他子级都是未选中),点击该子级,则父级也改为未 ...

  2. LeetCode之389. Find the Difference

    -------------------------------------------------- 先计算每个字母的出现次数然后减去,最后剩下的那一个就是后来添加的了. AC代码: public c ...

  3. 网络知识学习1---(基础知识:ISO/OSI七层模型和TCP/IP四层模型)

    以下的内容和之后的几篇博客只是比较初级的介绍,想要深入学习的话建议自己钻研<TCP/IP详解 卷1:协议> 1.ISO/OSI七层模型    下四层是为数据传输服务的,物理层是真正的传输数 ...

  4. <转>[WinForm] VS2010发布、打包安装程序(超全超详细)

    1. 在vs2010 选择“新建项目”→“ 其他项目类型”→“ Visual Studio Installer→“安装项目”: 命名为:Setup1 . 这是在VS2010中将有三个文件夹, 1.“应 ...

  5. Windows 8.1安装 Vmware10

    之前在windows 8上安装的Vmware 9.0,已经激活了用的蛮好,可是自从上次自动更新系统到windows 8.1后,启动虚拟机时提示要激活 使用各种激活码与注册机都无效,就算注册表信息丢失但 ...

  6. NOIP2009分数线划定【B004】

    [B004]分数线划定[难度B]—————————————————————————————————————————————————————————————————————————— [题目要求] 世博 ...

  7. STL set 用法

      c++ stl集合set介绍 c++ stl集合(Set)是一种包含已排序对象的关联容器.set/multiset会根据待定的排序准则,自动将元素排序.两者不同在于前者不允许元素重复,而后者允许. ...

  8. 怎样上传网页到ftp中

    1.下载filezilla软件软件并安装 打开刚刚装好的FileZilla,点击菜单中的"文件"             2.点击站点管理器 3.点击新站点

  9. Gitbook简易教程

    简介 GitBook 是一个基于 Node.js 的命令行工具,可使用 Github/Git 和 Markdown 来制作精美的电子书.GitBook支持输出以下几种文档格式 静态站点:GitBook ...

  10. Leetcode N-Queens II

    Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...