数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,具体细节大家还需仔细阅读那篇文章,这篇博客并不是重现那篇论文的内容,只是简单的梳理下CG算法的流程,以及它的重要思路,方便大家理解CG算法。

  首先我们需要解决的问题是:求满足线性方程(1):的解x.

  那么有人就这么认为了:这个解x不就是吗?对,这样说也不能算错,但是如果A不可逆那么x这样就解不出来了。另外当A矩阵的尺度非常大时(比如几百万维),即使其逆存在,这样计算的计算量也太大。而CG算法则可以通过少数的几步迭代来求出其近似解,虽然求出的解是近似的,但是其精度可以达到很高,完全可以满足我们的需求。

  下面就来看看CG算法实现时的大概流程:

  1. 随机选取一个初始点,记为,并记为此时方程(1)的残差,记第一个搜索方向为,搜索步长为.

  2. 现在假设我们已经按照某个迭代公式在第k步求出了,此时的残差,前面k次的搜索方向分别为,很明显这些变量都是已知的,而现在我们需要求的是第k次的搜索方向.在CG理论中,有这么一个假设,即,的线性组合,记为.

  3. 为了求出,就必须求出系数,怎么求呢?CG理论中另外一个性质就是:这k个向量关于A共轭,即满足共轭方程,其中0<=j<=k-1. 下面就可以利用该性质列出k个方程来求解这些系数了,其结果为:当0<=j<k-1时,系数;当j=k-1时,系数. 因此此时的搜索方向.

  4. 既然的值有了,搜索方向也有了,下一步就改确定搜索步长了,求它的思想是使取得极值,即导数为0。一旦求出了,则下一个迭代点也就求出了。表达式对求导为0后可求得.

  5. 循环步骤2,3,4,直到满足收敛条件。

  上面只是CG算法的基本版本,而常见的CG算法版本是针对上面的计算公式作了进一步推导,利用Krylov 子空间的一些性质,最后简化为:,同时对残差也是经过迭代得到(此处省略)。 由简化前后(此处省略N公式)对比可知,将原先表达式中一些矩阵和向量的乘积运算量减小了,因为很大一部分矩阵乘向量都转换成了向量乘向量。

  最后附上论文中关于CG算法的流程图,大家可以参考上面5个步骤来理解CG的主要思路,本博客中的符号可能和论文中的不一定相同,且公式也不一定是正确的,博文只是让大家知道这些公式是由什么理论推出的,有个宏观认识,一切需以论文中的内容为主。

  

  参考资料:

  Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain, Carnegie Mellon University, Pittsburgh, PA.

机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)的更多相关文章

  1. 对Conjugate Gradient 优化的简单理解

    对Conjugate Gradient 优化的简单理解) 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解) 数学优化方法在机器学习算法中至关重要,本篇博客 ...

  2. 机器学习&数据挖掘笔记_15(关于凸优化的一些简单概念)

    没有系统学过数学优化,但是机器学习中又常用到这些工具和技巧,机器学习中最常见的优化当属凸优化了,这些可以参考Ng的教学资料:http://cs229.stanford.edu/section/cs22 ...

  3. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  4. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  5. 机器学习&数据挖掘笔记_14(GMM-HMM语音识别简单理解)

    为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗 ...

  6. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  7. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  8. 李宏毅老师机器学习课程笔记_ML Lecture 3-1: Gradient Descent

    引言: 这个系列的笔记是台大李宏毅老师机器学习的课程笔记 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML- ...

  9. 机器学习&数据挖掘笔记_24(PGM练习八:结构学习)

    前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法, ...

随机推荐

  1. php跨域请求

    跨域api服务器设置 header('content-type:application:json;charset=utf8'); header('Access-Control-Allow-Origin ...

  2. PHP中实现MySQL嵌套事务的两种解决方案

    PHP中实现MySQL嵌套事务的两种解决方案 一.问题起源 在MySQL的官方文档中有明确的说明不支持嵌套事务: Transactions cannot be nested. This is a co ...

  3. ajax500错误

    昨天做一个需求,原先使用form提交的东西,领导说要改成使用ajax提交.嗯,听起来好像很简单很简单哦,可惜我已经很少敲代码了.擦,这工作让人槽点无数.果断写代码. var fm=document.g ...

  4. botbrew下写glib2程序

    作者 He YiJun – storysnail<at>gmail.com 团队 ls 版权 转载请保留本声明! 本文档包含的原创代码根据General Public License,v3 ...

  5. 【Hello CC.NET】巧用模板简化配置

    从 <[Hello CC.NET]CC.NET 实现自动化集成> 到 <[Hello CC.NET]自动化发布时 Web.config 文件维护> ,大神在评论里提到的方案还没 ...

  6. [Xamarin] 從Xamarin中呼叫 *.jar 的 library - 呼叫篇 (转帖)

    上篇文章我們建立一個很簡單的Library : com.example.blackfactory.UtilFunc 現在我們要在Xamarin 中呼叫囉! 首先我們要先成立一個橋接的專案 JARBri ...

  7. Amazon AWS EC2开启Web服务器配置

    在Amazon AWS EC2申请了一年的免费使用权,安装了CentOS + Mono + Jexus环境做一个Web Server使用. 在上述系统安装好之后,把TCP 80端口开启(iptable ...

  8. ie8下使用knockoutjs遇到的一个模板异常

    ViewModel中有一个数组,代码大概如下: function ReportViewModel(){ var self = this; self.extendedProperties = ko.ob ...

  9. Redhat Linux /etc/profile 与 /etc/bashrc 的区别

    最近学习RHCE,在umask这里,书里说要修改/etc/profile和/etc/bashrc两个文件,却没有说明这两个区别.于是在上网查看之后倒是明白了各是怎么用的./etc/profile是对应 ...

  10. C语言结构体-struct

    知识点: 1)结构体的定义. 2)结构体的sizeof. 3)  结构体的指针. 1) 结构体的定义: 在逻辑上有一定关联的多个数据类型做为一整体进行操作的数据结构,它的关键字是struct.下面我将 ...