大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM、AdaBoost、随机森林、GBDT、LR、FTRL这些概念。究其原因,主要是神经网络很难解决训练的问题,比如梯度消失。当时的神经网络研究进入一个低潮期,不过Hinton老人家坚持下来了。

功夫不负有心人,2006年Hinton和学生发表了利用RBM编码的深层神经网络的Science Paper:Reducing the Dimensionality of Data with Neural Networks,不过回头来看,这篇paper在当今的实用性并不强,它的更大作用是把神经网络又推回到大家视线中,利用单层的RBM自编码预训练使得深层的神经网络训练变得可能,但那时候Deep learning依然争议很多,最终真正爆发是2012年的ImageNet的夺冠,这是后话。

如图中所示,这篇paper的主要思想是使用受限RBM先分层训练,受限的意思是不包含层内的相互连接边(比如vi*vj或hi*hj)。每一层RBM训练时的目标是使得能量最小:

能量最小其实就是P(v, h)联合概率最大,而其他v’相关的p(v’, h)较小,后面这个是归一化因子相关。这块如果理解有问题的,需要补一下RBM相关知识,目前网上资料不少了。

大致的过程为,从输入层开始,不断进行降维,比如左图中的2000维降到1000维, 降维时保证能量最小,也就是输出h和输入v比较一致,而和其他输入v’不一致,换句话说,输出尽量保证输入的信息量。降维从目标上比较类似于PCA,但Hinton在文章说这种方法比PCA效果会好很多,尤其是经过多层压缩的时候(比如784个像素压缩到6个实数),从原理应该也是这样的,RBM每一层都尽量保留了输入的信息。

预训练结束后,就会展开得到中间的解码器,这是一个叠加的过程,也就是下一层RBM的输出作为上一层RBM的输入。

最后再利用真实数据进行参数细调,目标是输入图片经过编码解码后尽量保持原图信息,用的Loss函数是负Log Likelihood:

这篇在今天看来实用性不太大,难度也不大,但在当时这篇文章看起来还是晦涩的,很多原理没有细讲。为何能中Science?个人认为,毕竟Hinton是神经网络的泰斗,换个人名不见经传的人估计中不了,另外这篇文章也确实使得以前不可能的深层神经网络变得可能了,在今天依然有很多可以借鉴的地方,细心的同学会发现上百或上千层的ResNet的思想在一定程度上和这篇论文是神似的。ResNet也是意识到深层(152层)不好直接训练,那就在单层上想办法,将原来直接优化H(x)改为优化残差F(x) = H(x)-x,其中H(X)是某一层原始的的期望映射输出,x是输入,相当于输入x有个直通车到达该层输出,从而使得单层的训练更加容易。

参考资料:

[1] Paper:http://www.cs.toronto.edu/~hinton/science.pdf

[2] 代码:http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html


本文只是简单回顾,疏漏之处敬请谅解,感兴趣的可以加QQ群一起学习:252085834

#Deep Learning回顾#之2006年的Science Paper的更多相关文章

  1. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  2. #Deep Learning回顾#之基于深度学习的目标检测(阅读小结)

    原文链接:https://www.52ml.net/20287.html 这篇博文主要讲了深度学习在目标检测中的发展. 博文首先介绍了传统的目标检测算法过程: 传统的目标检测一般使用滑动窗口的框架,主 ...

  3. Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet - 我爱机器学习

    http://www.cnblogs.com/52machinelearning/p/5821591.html

  4. Deep Learning 经典网路回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    #Deep Learning回顾#之LeNet.AlexNet.GoogLeNet.VGG.ResNet 深入浅出——网络模型中Inception的作用与结构全解析 图像识别中的深度残差学习(Deep ...

  5. deep learning 经典网络模型之Alexnet、VGG、Googlenet、Resnet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  6. 深度学习Deep learning

    In the last chapter we learned that deep neural networks are often much harder to train than shallow ...

  7. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  8. Popular Deep Learning Tools – a review

    Popular Deep Learning Tools – a review Deep Learning is the hottest trend now in AI and Machine Lear ...

  9. Does Deep Learning Come from the Devil?

    Does Deep Learning Come from the Devil? Deep learning has revolutionized computer vision and natural ...

随机推荐

  1. jQuery EasyUI教程之datagrid应用(二)

    上次写到了让数据库数据在网页datagrid显示,我们只是单纯的实现了显示,仔细看的话显示的信息并没有达到我们理想的效果,这里我们丰富一下: 上次显示的结果是这样的 点击查看上篇:jQuery Eas ...

  2. React 快速入门小记

    大约半个月前,我一直在思考一个问题,Angular.React 和 Vue,究竟该学什么? 听取了几位前辈的意见,也综合考虑了各方面的原因,最终选择了 React,希望我"没有选错" ...

  3. k近邻

    k近邻(k-NearestNeighbor)算法简称kNN.基本思想简单直接,对于一个需要分类的数据实例x,计算x与所有已知类别的样本点在特征空间中的距离.取与x距离最近的k个样本点,统计这些样本点所 ...

  4. 实验二 用C语言表示进程的调度

    实验二 一. 实验目的 通过模拟进程的调度,进一步了解进程的调度的具体过程. 二. 实验内容和要求 1.进程PCB的结构体定义 2.定义队列 3.输入进程序列 4.排序(按到位时间) 5.输出进程运行 ...

  5. Android 升级SQLite数据库

    每一个数据库版本都会对应一个版本号,当指定的数据库版本号大于当前数据库的版本号时,就会进入到onUpGrade()方法中去执行更新操作.需要为每一个版本号赋予其各自改变的内容然后再onUpgrade( ...

  6. Inverted sentences

    And ever has it been that love knows not its own depth until the hour of separation.  除非临到了别离的时候,爱永远 ...

  7. 贪婪 vs 不贪婪

    当重复一个正则表达式时,如用 a*,操作结果是尽可能多地匹配模式.当你试着匹配一对对称的定界符,如 HTML 标志中的尖括号时这个事实经常困扰你.匹配单个 HTML 标志的模式不能正常工作,因为 .* ...

  8. No package mysql-server available.

    Centos 7 comes with MariaDB instead of MySQL. MariaDb is a open source equivalent to MySQL and can b ...

  9. SPSS数据分析—两阶段最小二乘法

    传统线性模型的假设之一是因变量之间相互独立,并且如果自变量之间不独立,会产生共线性,对于模型的精度也是会有影响的.虽然完全独立的两个变量是不存在的,但是我们在分析中也可以使用一些手段尽量减小这些问题产 ...

  10. css学习笔记 6

    对于css样式文件的规划方式将直接影响后期对web站点维护的效率,对于大型的复杂站点一般将css样式文件分为两部分:页面的全局定义及处理页面基本布局的css样式文件和处理细节方面的css样式文件.这样 ...