#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得;

#注:此笔记是我自己认为本节课里比较重要、难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点;

#标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末。博主能力有限,若有错误,恳请指正;

#---------------------------------------------------------------------------------#

logistic function(sigmoid function):g(z) = 1/(1 + e-z),z是一个实数;

我们的预测函数是:

logistic函数的图形:

, z>0时,g(z)>0.5;z<0时,g(z)<0.5;

#---------------------------------------------------------------------------------#

Cost function for logistic regression

;

线性回归的Cost function:

,

也可以写成:

;

如果我们使用这个函数作为逻辑回归的代价函数,那么它是非凸函数,不利于最优化;

逻辑回归代价函数的凸函数版本:

,

,纵坐标为Cost function;

将上世合并得最终使用的代价函数: cost(hθ, (x),y) = -ylog( hθ(x) ) - (1-y)log( 1- hθ(x) );

使逻辑回归代价函数最小化:

#---------------------------------------------------------------------------------#

Advanced optimization:conjugate gradient,BFGS,L-BFGS;

用这写方法的优点:

1,No need to manually pick alpha (learning rate);

2,Often faster than gradient descent;

3,Can be used successfully without understanding their complexity;

缺点:

1,Could make debugging more difficult;

2,Should not be implemented themselves;

3,Different libraries may use different implementations - may hit performance;

#---------------------------------------------------------------------------------#

多元分类问题

方法: 使用一对多的方法逐项分类,每次分出一个类;

;

还有一对一的方法,这两种方法的优缺点可见台湾大学机器学习第六周第十一讲的内容;

#---------------------------------------------------------------------------------#

过拟合问题:

underfit <=> higher bias;

overfit <=> higher variance, =>unable to generalize (apply to new examples),即不能用来做预测;

;

如何处理过拟合?

1) 减少特征数量

可用人工选择要保留的特征;

也可用模型来选择特征;

减少特征会失去一些信息,即使特征选的很好;

2) 正则化(Regularization)

保留所有特征,但减少θ的大小;

当我们有很多特征时,这个方法非常有效;

<补充>模型选择的典型方法是正则化。正则化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或惩罚项(penalty term)。正则化项一般是模型复杂度的单调递增函数,模型越复杂,正则化项就越大;

<补充>正则化的作用是选择经验风险最小和模型复杂度同时较小的模型;从贝叶斯估计的角度来看,正则化项对应于模型的先验概率;

#---------------------------------------------------------------------------------#

正则化的代价函数最优化

;

;

;

λ 是正则化参数;使得某几项θ变的很小;

如果λ很大,那么所有的θ参数都会变得很小,造成 underfitting,bias;

#---------------------------------------------------------------------------------#

线性回归的正则化

;

,

也即是

;

Regularization with the normal equation

逻辑回归的正则化

#---------------------------------------------------------------------------------#

Advanced optimization of regularized linear regression

#---------------------------------------------------------------------------------#

参考文献:

《统计学习方法》,李航著;

coursera: standford machine learning, by Andrew Ng;

coursera: 台湾大学機器學習基石,by 林軒田;

coursera机器学习-logistic回归,正则化的更多相关文章

  1. 机器学习——logistic回归,鸢尾花数据集预测,数据可视化

    0.鸢尾花数据集 鸢尾花数据集作为入门经典数据集.Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理.Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集.数据集包含150个数 ...

  2. 机器学习——Logistic回归

    1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...

  3. 机器学习——Logistic回归

    参考<机器学习实战> 利用Logistic回归进行分类的主要思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 分类借助的Sigmoid函数: Sigmoid函数图: Sigmo ...

  4. 机器学习--Logistic回归

    logistic回归 很多时候我们需要基于一些样本数据去预测某个事件是否发生,如预测某事件成功与失败,某人当选总统是否成功等. 这个时候我们希望得到的结果是 bool型的,即 true or fals ...

  5. 机器学习 Logistic 回归

    Logistic regression 适用于二分分类的算法,用于估计某事物的可能性. logistic分布表达式 $ F(x) = P(X<=x)=\frac{1}{1+e^{\frac{-( ...

  6. 机器学习-- Logistic回归 Logistic Regression

    转载自:http://blog.csdn.net/linuxcumt/article/details/8572746 1.假设随Tumor Size变化,预测病人的肿瘤是恶性(malignant)还是 ...

  7. 吴恩达-机器学习+Logistic回归分类方案

  8. Spark2.0机器学习系列之4:Logistic回归及Binary分类(二分问题)结果评估

    参数设置 α: 梯度上升算法迭代时候权重更新公式中包含 α :  http://blog.csdn.net/lu597203933/article/details/38468303 为了更好理解 α和 ...

  9. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

随机推荐

  1. Android Volley框架的使用(1)

    在Android开发中,经常要通过HTTP请求访问网络.为了使通过HTTP请求访问网络的过程更加简单,2013年提出了新的HTTP通信框架--Volley.Volley使用起来非常简单,适用于网络访问 ...

  2. 如何改变 FMX ListView 颜色

    需求:改变 ListView 颜色 适用:Firemonkey 任何平台 操作:Style 是改变控件外观最便捷的途径,ListView 也不例外,下面示范使用 StyleBook 来设定 ListV ...

  3. HDU 5510---Bazinga(指针模拟)

    题目链接 http://acm.hdu.edu.cn/search.php?action=listproblem Problem Description Ladies and gentlemen, p ...

  4. 袋鼠过河---DP

    题目:一只袋鼠要从河这边跳到河对岸,河很宽,但是河中间打了很多桩子,每隔一米就有一个,每个桩子上都有一个弹簧,袋鼠跳到弹簧上就可以跳的更远,每个弹簧力量不同,用一个数字代表它的力量,如果弹簧力量为5, ...

  5. No.014:Longest Common Prefix

    问题: Write a function to find the longest common prefix string amongst an array of strings. 官方难度: Eas ...

  6. [小北De编程手记] : Lesson 05 玩转 xUnit.Net 之 从Assert谈UT框架实践

    这一篇,本文会介绍一下基本的断言概念,但重点会放在企业级单元测试的相关功能上面.下面来跟大家分享一下xUnit.Net的断言,主要涉及到以下内容: 关于断言的概念 xUnit.Net常用的断言 关于单 ...

  7. GJM :自定义基于 VLC 的视频播放器 [转载]

    感谢您的阅读.喜欢的.有用的就请大哥大嫂们高抬贵手"推荐一下"吧!你的精神支持是博主强大的写作动力以及转载收藏动力.欢迎转载! 版权声明:本文原创发表于 [请点击连接前往] ,未经 ...

  8. quartz TRIGGER_STATE变为ERROR解决方法

    今天,项目组一个同事说开发环境一直正常quartz定时任务今天不跑了,因为异常已经封装了,所以应该不是没有捕获异常导致.也检查了JobDetail肯定没有重复的任务,最后检查qrtz_triggers ...

  9. windows 7/10下安装oracle 10g

    有段时间没搞oracle了,最近要给别人在win 7下装个oracle 10g,特记录备忘下. 使用http://download.oracle.com/otn/nt/oracle10g/10201/ ...

  10. Code First :使用Entity. Framework编程(1) ----转发 收藏

    这个是在学习EF CodeFirst时发现的,对于初学者还是不错的.果断转发,方便自己以后查阅和学习. 对于学习Code First 这个教程讲解的还是很详细. 第一章:欢迎来到Code First ...