#include<iostream>
using namespace std; int main()
{
int n,k;
long long a[][],b[][],c[][];
while(cin>>n>>k)
{
int x=k; for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
cin>>a[i][j];
b[i][j]=a[i][j];
c[i][j]=;
}
k=k-;
while(k--)
{ for(int i=;i<n;i++)
for(int j=;j<n;j++)
for(int m=;m<n;m++) {
c[i][j]=a[i][m]*b[m][j]+c[i][j];
}
if(k>=)
{ for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
a[i][j]=c[i][j];
c[i][j]=;
} } }
if(x==)
{
for(int i=;i<n;i++)
{
for(int j=;j<n-;j++)
cout<<b[i][j]<<' ';
cout<<b[i][n-]<<endl;
}
}
else
{
for(int i=;i<n;i++)
{
for(int j=;j<n-;j++) cout<<c[i][j]<<' ';
cout<<c[i][n-]<<endl;
} }
cout<<endl;
}
return ;
}
 c[i][j]=a[i][m]*b[m][j]+c[i][j];
这一句是关键,掌握了矩阵相乘的计算公式,则可得到

矩阵k次幂 采用三重循环的更多相关文章

  1. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  2. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  3. POJ 1026 置换群的k次幂问题

    题目大意: 给定了一组对应关系,经过k次幂后,得到新的对应关系b[i],然后将给定的字符串上的第i位字符放置到b[i]的位置上, 如果字符串长度不足n就用空格补足,这里的是空格,也就是str[i] = ...

  4. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  5. k-近邻算法采用for循环调参方法

    //2019.08.02下午#机器学习算法中的超参数与模型参数1.超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数.通常来说,人们所说的调参就是指调节超参数.2. ...

  6. BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...

  7. $O(k^2)$ 求前缀 $k$ 次幂和(与长度无关)

    接下来求解前缀幂次和 求解 \(\sum_{i = 1}^{k} i^k\) \[ \begin{aligned} (p+1)^k - 1 = (p+1)^k - p^k + p^k - (p-1)^ ...

  8. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  9. floyd三重循环最外层为什么一定是K

    Floyd算法为什么把k放在最外层? - 知乎 https://www.zhihu.com/question/30955032高票答案: 简单地总结一下:K没放在最外面一定是错的,但是在某些数据比较水 ...

随机推荐

  1. h5网页中使用打电话功能

    如果需要在移动浏览器中实现拨打电话,发送email,美国服务器,调用sns等功能,移动手机WEB页面(HTML5)Javascript提供的接口是一个好办法. 采用url链接的方式,实现在Safari ...

  2. 2016年12月27日 星期二 --出埃及记 Exodus 21:22

    2016年12月27日 星期二 --出埃及记 Exodus 21:22 "If men who are fighting hit a pregnant woman and she gives ...

  3. Java进行post和get传参数

    http://www.cnblogs.com/zhuawang/archive/2012/12/08/2809380.html get和post方法 import java.io.BufferedRe ...

  4. rethinkdb的dataexplorer查询使用

    首先安装rethinkdb(只有linux和mac能够安装) $ sudo apt-get install rethinkdb 然后启动: $ rethinkdb 此时8080端口就可以访问本机的数据 ...

  5. /usr/include/features.h:367:25:fatal errorXXXXXX类似这种问题

    解决方案: sudo apt-get install g++=multilib //至于为什么还没搞清楚,搞清楚在写上来吧!

  6. iOS解决NSData转NSString后字符为空

    iOS中,将NSData转NSString的一般方法为[[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];但是当dat ...

  7. [iOS][issis] requestLocationWithReGeocode AMapLocationErrorDomain Code=5 "取消"

    Tip: IOS 使用高德地图一次定位  (在该博客找到了解决答案) 在定位时如果出现下面这个Error,说明你的locationManager没有设置成全局变量,导致locationManager提 ...

  8. CentOS 7 程序自启动的问题

    Mysql具体的安装方法见http://www.cnblogs.com/yoyotl/p/5752437.html 但是关于自启动部分需要多一些说明. 一.问题现象: 系统重启后,发现mysqld服务 ...

  9. 双模蓝牙CC2564调试笔记

    1.CC256X Testing Guide  官方文档WIKI地址:http://processors.wiki.ti.com/index.php/CC256x_Testing_Guide#Devi ...

  10. solrconfig.xml解析

    solrconfig.xml配置文件主要定义了SOLR的一些处理规则,包括索引数据的存放位置,更新,删除,查询的一些规则配置.下面将对solrconfig进行详细描述:1 <luceneMatc ...