Goffi and Squary Partition

Time Limit: / MS (Java/Others)    Memory Limit: / K (Java/Others)
Total Submission(s): Accepted Submission(s): Problem Description
Recently, Goffi is interested in squary partition of integers. A set X of k distinct positive integers is called squary partition of n if and only if it satisfies the following conditions:
[ol]
the sum of k positive integers is equal to n
one of the subsets of X containing k− numbers sums up to a square of integer.
[/ol]
For example, a set {, , , } is a squary partition of because + + + = and + + = = × . Goffi wants to know, for some integers n and k, whether there exists a squary partition of n to k distinct positive integers. Input
Input contains multiple test cases (less than ). For each test case, there's one line containing two integers n and k (2≤n≤200000,2≤k≤30). Output
For each case, if there exists a squary partition of n to k distinct positive integers, output "YES" in a line. Otherwise, output "NO". Sample Input Sample Output
NO
YES
YES

题意:输入整数n和k,要求把n分成k个数之和的形式,其中存在k-1个数之和为一个完全平方数,而且这k个数各不相同。
分析: 我们尝试枚举那个完全平方数 S,然后看能否将他拆分为 K-1 个数,并且不用到N-S 这一步可以用贪心+一次调整来搞定。为了保证 K-1 个数都不同,我们尝试尽量

用 1,2,3...这些连续自然数来构造,如果 N-S 出现在这些数中,那么将 N-S 移除,再新加一个数。最后一个数由S-sum(1~k-2)(包括调整过的)来得到。

  • 1.如果sum值大于S值,可以分成两种情况来看

1.1 前k-2个数中不存在N-S,那么原数列为1,2,3,....,k-2,其中的和大于等于S值,且最小的数为1,没有剩余的空间减少这k-2个数的和

1.2 前k-2个数中存在N-S,设x等于N-S那么原数列为1,2,....x-1,x+1,.....,k-1,其中多出来的空间为避免N-S,同样不存在剩余空间减少和

  • 2.如果倒数最后一个数在前面k-2个数中出现,由上面结论可知,必定存在冲突,且无法调整
  • 3.如果倒数最后一个数与N-S相等,那么可以使得倒数第一个数-1和倒数第二个数+1,这样的调整代价是最小的,如果这样的处理方式仍存在冲突,就为错
#include <cstdio>
using namespace std;
int pnt[],top;
int n,k;
bool check(int x)
{
int sum=,top=;
int r=n-x,cc=,cnt=;
pnt[top++]=;
for(int i=; i<k-; i++)
{
cc++;
if(cc==r) cc++;
pnt[top++]=cc;
sum+=cc;
}
if(sum>=x) return false;
pnt[top]=x-sum;
if(pnt[top]<=pnt[top-]) return false;
if(pnt[top]==r)
{
if(pnt[top-]+>=pnt[top]-) return false;
}
return true;
}
int main()
{
while(~scanf("%d%d",&n,&k))
{
int flag=;
for(int i=; i<=; i++)
{
if(i*i>=n) break;
if(check(i*i))
{
printf("%d\n",i*i);
printf("YES\n");
flag=;
break;
}
}
if(flag) continue;
printf("NO\n");
}
return ;
}

hdu 4982 Goffi and Squary Partition的更多相关文章

  1. HDU 4982 Goffi and Squary Partition(推理)

    HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...

  2. 【HDOJ】4982 Goffi and Squary Partition

    题意就是整数划分,选出和为n的K个整数,其中K-1个数的和为完全平方数S.选择整数时需要从1,2,3..连续选择,当选择整数与n-S相等时,需要跳过n-S,即选择n-S+1.如此选择K-2个数,从而可 ...

  3. hdu4982 Goffi and Squary Partition (DFS解法)

    BestCoder Round #6 B http://acm.hdu.edu.cn/showproblem.php?pid=4982 Goffi and Squary Partition Time ...

  4. BestCoder6 1002 Goffi and Squary Partition(hdu 4982) 解题报告

    题目链接:http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?pid=1002&cid=530 (格式有一点点问题,直接粘 ...

  5. Goffi and Squary Partition

    题意: 给你N和K,问能否将N拆分成K个互不相同的正整数,并且其中K-1个数的和为完全平方数. PS:这道题目原来是要求输出一种可行方案的,所以下面题解是按照输出方案的思想搞的. 分析: 我们尝试枚举 ...

  6. HDU 4981 Goffi and Median(水)

    HDU 4981 Goffi and Median 思路:排序就能够得到中间数.然后总和和中间数*n比較一下就可以 代码: #include <cstdio> #include <c ...

  7. hdu 4983 Goffi and GCD(数论)

    题目链接:hdu 4983 Goffi and GCD 题目大意:求有多少对元组满足题目中的公式. 解题思路: n = 1或者k=2时:答案为1 k > 2时:答案为0(n≠1) k = 1时: ...

  8. HDU 4983 Goffi and GCD(数论)

    HDU 4983 Goffi and GCD 思路:数论题.假设k为2和n为1.那么仅仅可能1种.其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了.k = 1的时候,枚举n的因子 ...

  9. hdu 4982 贪心构造序列

    http://acm.hdu.edu.cn/showproblem.php?pid=4982 给定n和k,求一个包含k个不相同正整数的集合,要求元素之和为n,并且其中k-1的元素的和为完全平方数 枚举 ...

随机推荐

  1. svn:ignore eclipse开发一般忽略文件

    target.project.classpath.settings

  2. sql server 执行计划(execution plan)介绍

    大纲:目的介绍sql server 中执行计划的大致使用,当遇到查询性能瓶颈时,可以发挥用处,而且带有比较详细的学习文档和计划,阅读者可以按照我计划进行,从而达到对执行计划一个比较系统的学习. 什么是 ...

  3. redis 数据类型

    上一篇文章主要写了redis在linux下的安装,这里讲一下redis基本的数据类型,linux的数据类型比较丰富,主要有五种数据类型 .String 字符串类型 常用命令: 除了get.set.in ...

  4. asp.net应用程序生命周期和asp.net网页的生命周期

    一.asp.net应用程序生命周期 asp.net应用程序生命周期以浏览器向web服务器(比如IIS服务器)发送请求为起点,先后经历web服务器下的ISAPI(Internet Server Appl ...

  5. vim符号列表窗口

    有时使用vim开发时,需要能够直观的查看文件的符号列表或者变量list,但是vim不直接支持这个功能,需要使用ctags的插件支持. 以下是在ubuntu下的详细设置方法: 步骤1:安装ctags u ...

  6. 修复IE9.0下PlaceHolder 属性问题js脚本

    在开发前端系统时候碰到这种兼容问题,以下是个人解决方案,希望能给其他人带来帮助: var JPlaceHolder = { //检测 _check: function () { return 'pla ...

  7. [Note] changing building platform from vs 2013 to vs community 2015

    The error turned out as "undefined linkage"(The same as you haven't use some function that ...

  8. ZOJ 3705 Applications 模拟

    #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include< ...

  9. service XXX does not support chkconfig

    有时候为了方便管理,我们常常喜欢在Linux中将之安装为服务,然后就可以使用服务来管理. 但是当我们运行安装服务的命令时候,假设服务名为myservice #chkconfig --add myser ...

  10. CentOS6.5 (64bit) 光盘内部FTP源

    一.启动系统,用ISO镜像挂载[root@yum ~]# mkdir -p /mnt/cdrom01[root@yum ~]# mkdir -p /mnt/cdrom02 [root@yum ~]# ...